精英家教网 > 高中数学 > 题目详情

对于任意实数x,不等式|2x+m|+|x-1|≥a恒成立时,若实数a的最大值为3,则实数m的值为________.

答案:
解析:

4或-8


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足
f(x1)-f(x2)
x1-x2
<0
,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
y
x
的取值范围为
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义域为R且同时满足:①f(x)图象左移1个单位后所得函数为偶函数;②对于任意大于1的不等实数a,b,总有
f(a)-f(b)
a-b
>0
成立.
(1)f(x)的图象是否有对称轴?如果有,写出对称轴方程.并说明在区间(-∞,1)上f(x)的单调性;
(2)设g(x)=
1
f(x)
+
1
2-x
,如果f(0)=1,判断g(x)=0是否有负实根并说明理由;
(3)如果x1>0,x2<0且x1+x2+2<0,比较f(-x1)与f(-x2)的大小并简述理由.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数F(x)=x3f(x)(x∈R)是[0,+∞)上的增函数,又f(x)是偶函数,那么对于任意实数a,下列不等关系成立的是


  1. A.
    F(a2-2a+2)≥F(2)
  2. B.
    F(a2-2a+2)≤F(2)
  3. C.
    F(a2-2a+2)≥F(1)
  4. D.
    F(a2-2a+2)≤F(1)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省盐城市东台市安丰中学高一(上)期中数学试卷(解析版) 题型:解答题

已知函数f(x)定义域为R且同时满足:①f(x)图象左移1个单位后所得函数为偶函数;②对于任意大于1的不等实数a,b,总有成立.
(1)f(x)的图象是否有对称轴?如果有,写出对称轴方程.并说明在区间(-∞,1)上f(x)的单调性;
(2)设,如果f(0)=1,判断g(x)=0是否有负实根并说明理由;
(3)如果x1>0,x2<0且x1+x2+2<0,比较f(-x1)与f(-x2)的大小并简述理由.

查看答案和解析>>

科目:高中数学 来源:2012年山东省实验中学高考数学三模试卷(理科)(解析版) 题型:解答题

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,的取值范围为   

查看答案和解析>>

同步练习册答案