精英家教网 > 高中数学 > 题目详情

设f(x)=x2x+13,实数a满足|xa|<1,求证:|f(x)f(a)|<2(|a|+1).

 

【答案】

见解析.

【解析】

试题分析:计算利用绝对值的性质放缩处理即可得证.

试题解析:

.    10分

考点:二次函数、绝对值不等式.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2x-2
,(x∈R,
且x≠2)
(1)求f(x)的单调区间;
(2)若函数g(x)=x2-2ax与函数f(x)在x∈[0,1]时有相同的值域,求a的值;
(3)设a≥1,函数h(x)=x3-3a2x+5a,x∈[0,1],若对于任意x1∈[0,1],总存在x0∈[0,1],使得h(x0)=f(x1)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2x≤0
f(x-1)x>0
,则函数g(x)=f(x)-x的零点的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
2x+1
,x∈(0,+∞)
,数列{an}满足a1=1,an+1=f(an);数列{bn}满足b1=
1
2
bn+1=
1
1-2f(Sn)
,其中Sn为数列{bn}前n项和,n=1,2,3…
(1)求数列{an}和数列{bn}的通项公式;
(2)设Tn=
1
a1b1
+
1
a2b2
+…+
1
anbn
,证明Tn<5.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•北京模拟)已知函数f(x)=
x
2x+1
,数列{an}满足a1=f(1),an+1=f(an)(n∈N*).
(Ⅰ)求a1,a2的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=an•an+1,求数列{bn}的前n项和Sn,并比较Sn
n
2n+18

查看答案和解析>>

同步练习册答案