精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\left\{\begin{array}{l}{(2+a)x+1,x<1}\\{-ax,x≥1}\end{array}\right.$是(-∞,+∞)上的增函数,则实数a的取值范围是(-2,-$\frac{3}{2}$].

分析 对x讨论,x<1和x≥1时,由一次函数的单调性可得a的范围,再由(2+a)+1≤-a,即可得到所求a的范围.

解答 解:当x<1时,函数f(x)=(2+a)x+1在(-∞,1)递增,
可得2+a>0,即a>-2①,
当x≥1时,函数f(x)=-ax在[1,+∞)递增,可得-a>0,即a<0②,
由f(x)在(-∞,+∞)上为增函数,
可得(2+a)+1≤-a,即a≤-$\frac{3}{2}$③,
由①②③可得,-2<a≤-$\frac{3}{2}$,
故答案为:(-2,-$\frac{3}{2}$].

点评 本题考查分段函数的应用:判断函数的单调性,注意函数在分界点的情况,考查运算能力,属于中档题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知等比数列{an}的前n项和为Sn=2n+a,n∈N*,则实数a的值是(  )
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果一个几何体的三视图如图所示,求此几何体的体积是(  )
A.12B.16C.32D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=-x|x-a|+1(x∈R)
(1)若函数f(x)恰有两个零点,求实数a的值;
(2)对于任意a∈(0,3),存在x0∈[1,2],使得不等式k≤f(x0)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数y=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sinxcosx+1(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)的单调减区间;
(3)当y取得最大值时,求自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-2|+2|x+a|(a>0).
(1)当a=1时,解不等式f(x)>8;
(2)若不等式f(x)≥3在(-∞,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知实数a>0,b>0,函数f(x)=|x-a|-|x+b|的最大值为3.
(I) 求a+b的值;
(Ⅱ)设函数g(x)=-x2-ax-b,若对于?x≥a均有g(x)<f(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四面体P-ABC中,PA⊥平面ABC,AB⊥BC.
(Ⅰ)在四面体各表面所成的二面角中,指出所有的直二面角,并说明理由;
(Ⅱ)若PA=AB=1,AC=2,求四面体各表面所成角的二面角中,最小角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\sqrt{2x+1}$在点(0,1)处的切线方程x-y+1=0.

查看答案和解析>>

同步练习册答案