精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=|x-2|+2|x+a|(a>0).
(1)当a=1时,解不等式f(x)>8;
(2)若不等式f(x)≥3在(-∞,+∞)上恒成立,求实数a的取值范围.

分析 (1)按照x≤-1,-1<x≤2,x>2三种情况进行讨论,去掉绝对值符号可解不等式,注意三种情况要对x的范围取并集;
(Ⅱ)f(x)≥3即|x-2|+2|x-a|≥3,求出f(x)的最小值是a+2,得到a+2≥3,解出即可.

解答 解:(1)当a=1时,f(x)=|x-2|+2|x+1|,
①当x≤-1时,f(x)=2-x-2(x+1)=-3x,
由f(x)>8,得-3x>8,解得x<-$\frac{8}{3}$;
②-1<x≤2时,f(x)=2-x+2(x+1)=x+4,
由f(x)>8,得x>4,
∴此时不等式无解;
③当x>2时,f(x)=x-2+2(x+1)=3x,
由f(x)>8,得3x>8,解得x>$\frac{8}{3}$;
综上,不等式f(x)>3的解集为(-∞,-$\frac{8}{3}$)∪($\frac{8}{3}$,+∞).
(2)∵a>0,∴-a<0<2,
f(x)=|x-2|+2|x+a|=$\left\{\begin{array}{l}{-3x+2-2a,x≤-a}\\{x+2a+2,-a<x<2}\\{3x-2+2a,x≥2}\end{array}\right.$,
∴f(x)min=f(-a)=a+2,
f(x)≥3即a+2≥3,解得:a≥1.

点评 对于含有绝对值的题目,本身就是分类的,问题的提出已包含了分类的原因.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法,在高考试题中占有重要的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设(1-$\frac{2}{x}$)3=a0+a1•$\frac{1}{x}$+a2•($\frac{1}{x}$)2+a3•($\frac{1}{x}$)3,则a1+a2=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知一个四棱锥的正视图和俯视图如图所示,其中a+b=10,则当该三棱锥的体积最大时,正视图的高x=(  )
A.2B.4C.6D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=cos2x-2cos2$\frac{x}{2}$在[0,π]上的单调递增区间是[$\frac{π}{3}$,π].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{(2+a)x+1,x<1}\\{-ax,x≥1}\end{array}\right.$是(-∞,+∞)上的增函数,则实数a的取值范围是(-2,-$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sin(x+$\frac{θ}{2}$)•cos(x+$\frac{θ}{2}$)+2$\sqrt{3}$cos2(x+$\frac{θ}{2}$)-$\sqrt{3}$.
(1)若0≤θ≤π,求使f(x)为偶函数的θ的值;
(2)在(1)的条件下,若直线y=m与函数y=|f(x)|($\frac{π}{12}$≤x≤$\frac{5π}{6}$)的图象有且仅有两个公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=2cosα-1}\\{y=\sqrt{3}sinα}\end{array}}\right.$(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)若直线l的参数方程为$\left\{{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}}\right.$,其中t为参数,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\underset{lim}{n→∞}$(5n-$\sqrt{an^2-bn+c}$=2,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,已知PA与圆O相切于点A,经过圆心O的割线PBC交圆O于点B,C,AC=AP,则$\frac{PC}{AC}$的值为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

同步练习册答案