精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象与轴相切,且切点在轴的正半轴上.

(1)若函数上的极小值不大于,求的取值范围;

(2)设,证明: 上的最小值为定值.

【答案】(1);(2)定值

【解析】试题分析:(1)函数的图象与轴相切可得。所以 ,对分类讨论可得①当 无极值;②当时, 处取得极小值;③当时, 上无极小值。综上得当当时, 上有极小值,解得。(2),所以 ,令分析可得上递增,因此,所以当 单调递减 单调递增为定值。

试题解析:

1解:

∴令

由题意可得 .

①当 无极值.

②当

有极小值.

③当时, 上无极小值。

综上可得当 上有极小值且极小值为

.

解得

实数的取值范围为

(2)证明:由条件得

上递增,

.

.

单调递减 单调递增

有极小值,也为最小值,且为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l经过抛物线y24x的焦点F,且与抛物线相交于AB两点.

1)若AF4,求点A的坐标;

2)求线段AB的长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,.

(1)求函数的单调性;

(2)如果对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与抛物线相交于不同的两点.

(1)如果直线过抛物线的焦点,求的值;

(2)如果 ,证明:直线必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:的离心率为,点P(1,)在椭圆C上,直线l过椭圆的右焦点与椭圆相交于A,B两点.

(1)求椭圆C的方程;

(2)在x轴上是否存在定点M,使得为定值?若存在,求定点M的坐标;若不在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.

(1)求这4个人中恰有2个人去参加甲游戏的概率;

(2) 用X表示这4个人中去参加乙游戏的人数,求随机变量X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某保险公司的推销员中随机抽取50名,统计这些推销员某月的月销售额(单位:千元),由统计结果得如图频数分别表:

月销售额

分组

[12.25,14.75)

[14.75,17.25)

[17.25,19.75)

[19.75,22.25)

[22.25,24.75)

频数

4

10

24

8

4

(1)作出这些数据的频率分布直方图;

(2)估计这些推销员的月销售额的平均数(同一组中的数据用该组区间的中点作代表);

(3)根据以上抽样调查数据,公司将推销员的月销售指标确定为17.875千元,试判断是否有60%的职工能够完成该销售指标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某位同学进行社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了12月11日至12月15日的白天平均气温 (℃)与该小卖部的这种饮料销量(杯),得到如下数据:

日期

12月11日

12月12日

12月13日

12月14日

12月15日

平均气温(℃)

9

10

12

11

8

销量(杯)

23

25

30

26

21

(1)请根据所给五组数据,求出关于的线性回归方程

(2)据(1)中所得的线性回归方程,若天气预报12月16日的白天平均气温7(℃),请预测该奶茶店这种饮料的销量. (参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是数列的前项和,已知 .

(Ⅰ)求数列的通项公式;

(Ⅱ)令,数列的前项和为,求.

查看答案和解析>>

同步练习册答案