分析 由an+1=$\frac{n+2}{n}$an,可得$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+2}{n}$.利用“累乘求积”方法即可得出.
解答 解:∵an+1=$\frac{n+2}{n}$an,∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+2}{n}$.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{3}}{{a}_{2}}$•$\frac{{a}_{2}}{{a}_{1}}$•a1
=$\frac{n+1}{n-1}$$•\frac{n}{n-2}$$•\frac{n-1}{n-3}$•…•$\frac{4}{2}$•$\frac{3}{1}$×2
=n(n+1),n=1时也成立.
∴an=n(n+1).
点评 本题考查了递推关系、“累乘求积”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 若x≥0或x≤-1,则x2≥1 | B. | 若x2<1,则-1<x<0 | ||
| C. | 若x2>1,则x>0或x<-1 | D. | 若x2≥1,则x≥0或x≤-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com