精英家教网 > 高中数学 > 题目详情

已知函数数学公式在x=1处取得极值,且a>3
(1)求a与b满足的关系式;
(2)求函数f(x)的单调区间.

解:(1)求导函数,可得=
∴函数在x=1处取得极值,
∴1-a-b=0
此时f′(x)=
∵a>3
∴1-a≠1,∴a与b满足的关系式为1-a-b=0(a>3);
(2)∵a>3,∴1-a<-2
由f′(x)>0,结合x>0,可得x>1;由f′(x)<0,结合x>0,可得0<x<1
∴函数的单调增区间为(1,+∞),单调减区间为(0,1).
分析:(1)求导函数,利用1处的导数等于0,可得a与b满足的关系式;
(2)由导数的正负,即可得到函数f(x)的单调区间.
点评:本题考查导数知识的运用,考查函数的极值与单调性,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年龙岩一中模拟文)(14分)

已知函数在x=1处取到极值 

(Ⅰ)求a,b满足的关系式(用a表示b)

(Ⅱ)解关于x的不等式

(Ⅲ)问当时,给定定义域为D=[0,1]时,函数是否满足对任意的

都有.如果是,请给出证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年龙岩一中模拟文)(14分)

已知函数在x=1处取到极值 

(Ⅰ)求a,b满足的关系式(用a表示b)

(Ⅱ)解关于x的不等式

(Ⅲ)问当时,给定定义域为D=[0,1]时,函数是否满足对任意的

都有.如果是,请给出证明;如果不是,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省吉林市高三(下)期中数学试卷(理科)(解析版) 题型:解答题

已知函数在x=1处取到极值2
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)=ax-lnx.若对任意的,总存在唯一的,使得g(x2)=f(x1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年吉林省高考数学仿真模拟试卷1(理科)(解析版) 题型:解答题

已知函数在x=1处取到极值2
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)=ax-lnx.若对任意的,总存在唯一的,使得g(x2)=f(x1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省吉林市高三(下)期中数学试卷(文科)(解析版) 题型:解答题

已知函数在x=1处取到极值2.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数.若对任意的x1∈R,总存在x2∈[1,e],使得,求实数a的取值范围.

查看答案和解析>>

同步练习册答案