精英家教网 > 高中数学 > 题目详情
设F1,F2分别为椭圆C:的左,右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为2
(I)求椭圆C的焦距;
(Ⅱ)如果,求椭圆C的方程。
解:(Ⅰ)设焦距为2c,由已知可得F1到直线l的距离
故c=2
所以椭圆C的焦距为4;
(Ⅱ)设A(x1,y1),B(x2,y2
由题意知y1<0,y2>0,直线l的方程为
联立

解得
因为
所以

得a=3

所以
故椭圆C的方程为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2分别为椭C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右两个焦点,椭圆C上的点A(1,
3
2
)
到两点的距离之和等于4.
(Ⅰ)求椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点Q(0.
1
2
)
求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设F1,F2分别为椭C:数学公式(a>b>0)的左、右两个焦点,椭圆C上的点数学公式到两点的距离之和等于4.
(Ⅰ)求椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点数学公式求|PQ|的最大值.

查看答案和解析>>

同步练习册答案