精英家教网 > 高中数学 > 题目详情
14.定义:关于x的两个不等式f(x)<0,g(x)<0的解集分别为(a,b)和($\frac{1}{a}$,$\frac{1}{b}$),则称这两个不等式为对偶不等式,如果不等式x${\;}^{2}-4\sqrt{3}xcosθ+2<0$与不等式2x2+4sinθ+1<0为对偶不等式,且θ∈(0,π),则θ=$\frac{5π}{6}$.

分析 依题意知,a、b为x${\;}^{2}-4\sqrt{3}xcosθ+2<0$=0的两根,方程2x2+4xsinθ+1=0的两根为 $\frac{1}{a}$,$\frac{1}{b}$,利用韦达定理可得tanθ=-$\sqrt{3}$,θ∈(0,π),从而可求θ.

解答 解:设方为a、b,则a+b=4$\sqrt{3}$cosθ,ab=2,
又方程2x2+4xsin2θ+1=0的两根为$\frac{1}{a}$,$\frac{1}{b}$,
所以 $\frac{1}{a}$+$\frac{1}{b}$=-2sinθ,
所以$\frac{4\sqrt{3}cosθ}{2}$=-2sinθ,即tanθ=-$\sqrt{3}$,
因为θ∈(0,π),
所以θ=$\frac{5π}{6}$.
故答案为:$\frac{5π}{6}$.

点评 本题考查三角函数的化简求值,考查方程思想与韦达定理的应用,求得tanθ=-$\sqrt{3}$是关键,考查运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.5个黑球和4个白球从左到右任意排成一排,下列说法正确的是(  )
A.总存在一个黑球,它右侧的白球和黑球一样多
B.总存在一个白球,它右侧的白球和黑球一样多
C.总存在一个黑球,它右侧的白球比黑球少一个
D.总存在一个白球,它右侧的白球比黑球少一个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为120°求:
(Ⅰ)($\overrightarrow{a}$-2$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$);  
(Ⅱ)|$\overrightarrow{a}$+$\overrightarrow{b}$|;
(Ⅲ)$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线y=x+b与曲线y=$\sqrt{49-{x}^{2}}$有公共点,则b的取值范围是(  )
A.[-7,7$\sqrt{2}$]B.[-7$\sqrt{2}$,7$\sqrt{2}$]C.[-7,7]D.[0,7$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\left\{\begin{array}{l}(2-a)x-12,x≤7\\{(a+2)^{x-6}},x>7\end{array}$是R上的增函数
(1)求实数a的取值范围;
(2)若g(x)=-$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}+2ax(x∈[{1,4}])$的最小值为-$\frac{16}{3}$,试比较f(g(x))的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知x,y为任意实数,有a=2x+y,b=2x-y,c=y-1
(1)若4x+y=2,求a2+b2+c2的最小值;
(2)求|a|,|b|,|c|三个数中最大数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的前n项和为Sn=n(2n+1),则a5=19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在半径为5的球面上有不共面的四个点A、B、C、D,且AB=CD=x,BC=DA=y,CA=BD=z,则 x2+y2+z2=(  )
A.120B.140C.180D.200

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若sinα是5x2-7x-6=0的根,则$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)tan^2(2π-α)}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(π+α)}$=(  )
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

同步练习册答案