精英家教网 > 高中数学 > 题目详情
3.在半径为5的球面上有不共面的四个点A、B、C、D,且AB=CD=x,BC=DA=y,CA=BD=z,则 x2+y2+z2=(  )
A.120B.140C.180D.200

分析 构造长方体,其面上的对角线构成三棱锥D-ABC,计算出长方体的长宽高,利用勾股定理可得结论.

解答 解:构造一个长方体,使得四面体ABCD的六条棱分别是长方体某个面的对角线(如图).
设长方体的长、宽、高分别为a,b,c,则
a2+b2+c2=100,x2=a2+b2,y2=a2+c2,z2=b2+c2
故x2+y2+z2=2(a2+b2+c2)=200,
故选:D.

点评 本题考查球的内接三棱锥,考查学生的计算能力,构造长方体是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an}是递增数列,Sn是{an}的前n项和,若a1,a3是方程x2-5x+4=0的两根,则S6的值为(  )
A.63B.-63C.-21D.63或-21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义:关于x的两个不等式f(x)<0,g(x)<0的解集分别为(a,b)和($\frac{1}{a}$,$\frac{1}{b}$),则称这两个不等式为对偶不等式,如果不等式x${\;}^{2}-4\sqrt{3}xcosθ+2<0$与不等式2x2+4sinθ+1<0为对偶不等式,且θ∈(0,π),则θ=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设不等式3-2x<0的解集为M,下列关系中正确的有②.
①0∈M,2∈M       
②0∉M,2∈M
③0∈M,2∉M   
④0∉M,2∉M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c.已知$\overrightarrow{AB}$•$\overrightarrow{BC}$=-2,cosB=$\frac{1}{3}$,b=3.求:
(Ⅰ)a和c的值;
(Ⅱ)cos(B-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x+$\frac{a}{x}$ (x≠0,常数a∈R).
(1)判断f(x)的奇偶性,并证明;
(2)若f(1)=2,试判断f(x)在[2,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow a=(x-z,1)$,$\overrightarrow b=(2,y+z)$,且$\overrightarrow a⊥\overrightarrow b$,若x,y满足约束条件$\left\{{\begin{array}{l}{y≤x}\\{x+y≥2}\\{y≥3x-6}\end{array}}\right.$,则z的最小值为(  )
A.3B.2C.9D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.△ABC在内角A、B、C所对的边分别为a,b,c;向量$\overrightarrow{m}$=(cosA,a)与$\overrightarrow{n}$=(sinB,$\sqrt{3}$b)平行.
(1)求A;
(2)若$a=\sqrt{7},b=2$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在正三棱柱(侧棱垂直于底面,且底面是正三角形)ABC-A1B1C1中,D是AC边的中点.
(1)求证:AB1∥平面DBC1
(2)当CA1⊥AB1时,求证:CA1⊥平面DBC1

查看答案和解析>>

同步练习册答案