分析 (1)利用向量平行,列出方程,利用正弦定理,化简求解即可.
(2)利用余弦定理求出c,然后利用面积公式求解即可.
解答 解:(1)因为向量$\overrightarrow{m}$=(cosA,a)与$\overrightarrow{n}$=(sinB,$\sqrt{3}$b)平行,
所以$asinB-\sqrt{3}bcosA=0$,
由正弦定理,得$sinAsinB-\sqrt{3}sinBcosA=0$,
又sinB≠0,从而$tanA=\sqrt{3}$,
由于0<A<π,所以$A=\frac{π}{3}$,
(2)由余弦定理,得a2=b2+c2-2bccosA,
而$a=\sqrt{7},b=2,A=\frac{π}{3}$,
得7=4+c2-2c,即c2-2c-3=0,
因为c>0,所以c=3.
故△ABC的面积为$\frac{1}{2}bcsinA=\frac{{3\sqrt{3}}}{2}$.
点评 本题考查正弦定理以及余弦定理的应用,向量共线的充要条件的应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | [-7,7$\sqrt{2}$] | B. | [-7$\sqrt{2}$,7$\sqrt{2}$] | C. | [-7,7] | D. | [0,7$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 120 | B. | 140 | C. | 180 | D. | 200 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 24种 | B. | 18种 | C. | 72种 | D. | 36种 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com