精英家教网 > 高中数学 > 题目详情
1.设数列{an}满足对任意m,n∈N*总有am+n=aman成立,且a1=2.
(1)求数列{an}的通项公式;
(2)若数列{bn}的前n项和为Sn,且bn=log2an,试求数列$\{\frac{1}{S_n}\}$的前n项和Tn

分析 (1)数列{an}满足对任意m,n∈N*总有am+n=aman成立,且a1=2.可得an+1=a1an=2an,利用等比数列的通项公式即可得出.
(2)bn=log2an=n.可得Sn,$\frac{1}{{S}_{n}}$=2$(\frac{1}{n}-\frac{1}{n+1})$.再利用“裂项求和方法”即可得出.

解答 解:(1)数列{an}满足对任意m,n∈N*总有am+n=aman成立,且a1=2.
∴an+1=a1an=2an
∴数列{an}是等比数列,公比为2,∴an=2n
(2)bn=log2an=n.
∴Sn=$\frac{n(n+1)}{2}$.
∴$\frac{1}{{S}_{n}}$=2$(\frac{1}{n}-\frac{1}{n+1})$.
∴数列$\{\frac{1}{S_n}\}$的前n项和Tn=2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$
=$\frac{2n}{n+1}$.

点评 本题考查了等比数列的通项公式、“裂项求和方法”、递推公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设不等式3-2x<0的解集为M,下列关系中正确的有②.
①0∈M,2∈M       
②0∉M,2∈M
③0∈M,2∉M   
④0∉M,2∉M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.△ABC在内角A、B、C所对的边分别为a,b,c;向量$\overrightarrow{m}$=(cosA,a)与$\overrightarrow{n}$=(sinB,$\sqrt{3}$b)平行.
(1)求A;
(2)若$a=\sqrt{7},b=2$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,以O为极点,x中正半轴为极轴建立坐标系,直线l的极坐标方程为$ρsin(θ+\frac{π}{4})=\frac{{\sqrt{2}}}{2}$,圆C的参数方程为$\left\{\begin{array}{l}x=-\frac{{\sqrt{2}}}{2}+rcosθ\\ y=-\frac{{\sqrt{2}}}{2}+rsinθ\end{array}\right.(θ$为参数,r>0)
(1)求直线l的普通方程以及圆心C的坐标;
(2)当r为何值时,圆C上的点到直线l的最大距离为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.关于下列命题:
①函数$y=cos({2x+\frac{π}{3}})$的一条对称轴为直线:$x=-\frac{π}{6}$;
②函数$y=cos2({\frac{π}{3}-x})$是偶函数;
③函数$y=4sin({2x-\frac{π}{3}})$的一个对称中心是$({\frac{π}{6},0})$;
④函数$y=sin({x+\frac{π}{4}})$在闭区间$[{-\frac{π}{2},\frac{π}{2}}]$上是增函数
写出所有所有正确的命题的序号:①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.二项式${(2{x^2}-\frac{1}{x})^5}$展开式中含x4的二项式系数为(  )
A.80B.10C.-10D.-80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在正三棱柱(侧棱垂直于底面,且底面是正三角形)ABC-A1B1C1中,D是AC边的中点.
(1)求证:AB1∥平面DBC1
(2)当CA1⊥AB1时,求证:CA1⊥平面DBC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知{an}是等差数列,且a3+a5+a7+a9=18,则a5+a7=(  )
A.12B.11C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,A,B,C所对的边分别是a,b,c,2cos(A+B)=1,且a,b 是方程x2-2$\sqrt{3}$x+2=0的两根.
(1)求角C的度数;      
(2)求AB的长;    
(3)求△ABC的面积.

查看答案和解析>>

同步练习册答案