精英家教网 > 高中数学 > 题目详情
11.在△ABC中,A,B,C所对的边分别是a,b,c,2cos(A+B)=1,且a,b 是方程x2-2$\sqrt{3}$x+2=0的两根.
(1)求角C的度数;      
(2)求AB的长;    
(3)求△ABC的面积.

分析 (1)已知等式表示求出cosC的值,确定出C的度数;
(2)由a,b为已知方程的解,利用韦达定理求出a+b与ab的值,利用余弦定理求出c的值即可;
(3)由ab,sinC的值,利用三角形面积公式求出三角形ABC面积即可.

解答 解:(1)依题意得,2cos(A+B)=2cos(π-C)=-2cosC=-1,
∴cosC=$\frac{1}{2}$,
∵0<C<π,∴C=$\frac{π}{3}$,
(2)∵a、b是方程x2-2$\sqrt{3}$x+2=0的两个根,
∴a+b=2$\sqrt{3}$,ab=2,
由余弦定理得c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC=12-4-2=6,
∴c=$\sqrt{6}$;
(3)由(1)(2)知C=$\frac{π}{3}$,ab=2,
则S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×2×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.

点评 此题考查了余弦定理,韦达定理,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设数列{an}满足对任意m,n∈N*总有am+n=aman成立,且a1=2.
(1)求数列{an}的通项公式;
(2)若数列{bn}的前n项和为Sn,且bn=log2an,试求数列$\{\frac{1}{S_n}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.分配4名煤气工去3个不同的居民家里检查煤气管道,要求4名煤气工都分配出去,并每名煤气工只去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有(  )
A.24种B.18种C.72种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1.求:
(1)$\overrightarrow{a}$•$\overrightarrow{b}$;    
(2)|$\overrightarrow{a}$+2$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={x|3≤x<10},B={x|2x-8≥0},则∁R(A∩B)={x|x<4或x≥10}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算:
(1)$\frac{lg2+lg5-lg8}{lg50-lg40}$
(2)$2^{2+{log}_{\sqrt{2}}\frac{1}{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等比数列{an}的前n项和为Sn,且S10=33S5,则q=(  )
A.-2B.1C.2D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示框图,如果计算  1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{19}$的值,则判断框内应填入的条件是(  )
A.n>10?B.n<11?C.n>9?D.n>11?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.当-4≤x≤4时,f(x)的图象与x轴所围成图形的面积是4.

查看答案和解析>>

同步练习册答案