分析 (1)利用极坐标方程与直角坐标方程互化方法得到直线l的普通方程,利用圆的参数方程得当圆心C的坐标;
(2)圆心(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)到直线的距离d=$\frac{|-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}-1|}{\sqrt{2}}$=$\frac{1+\sqrt{2}}{2}$,利用圆C上的点到直线l的最大距离为3,求r.
解答 解:(1)直线l的极坐标方程为$ρsin(θ+\frac{π}{4})=\frac{{\sqrt{2}}}{2}$,可得ρ(cosθ+sinθ)=1,
∴x+y-1=0;
由$\left\{\begin{array}{l}x=-\frac{{\sqrt{2}}}{2}+rcosθ\\ y=-\frac{{\sqrt{2}}}{2}+rsinθ\end{array}\right.(θ$为参数,r>0),可得圆心(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),极坐标为(1,$\frac{5π}{4}$);
(2)圆心(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)到直线的距离d=$\frac{|-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}-1|}{\sqrt{2}}$=$\frac{1+\sqrt{2}}{2}$,
∵圆C上的点到直线l的最大距离为3.
∴$\frac{1+\sqrt{2}}{2}$+r=3,
∴r=2-$\frac{\sqrt{2}}{2}$.
点评 本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、点到直线的距离公式、勾股定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,-1] | B. | [-2,1) | C. | [-1,1) | D. | [-1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com