设AB是圆x2+y2=1的一条直径,以AB为直角边、B为直角顶点,逆时针方向作等腰直角三角形ABC.当AB变动时,求C点的轨迹.
![]()
所求轨迹是以原点为圆心,
为半径的圆.
解法一:(参数法)取∠xOB=θ为参数,则B(cosθ,sinθ),
于是,(x-cosθ)2+(y-sinθ)2=4.
=-cotθ,消去θ得x2+y2=5.
故所求轨迹是以原点为圆心,
为半径的圆.
解法二:(相关点法)设C(x,y)、B(x0,y0),
当x0、y0≠0时,
则(x-x0)2+(y-y0)2=4.
·
=-1.由x02+y02=1消去x0、y0得轨迹方程.显然当x0=0或y0=0时,方程也适合.
解法三:(几何法)连结CO,因为|OC|2=|OB|2+|AB|2=5为定值,故其轨迹为圆.
评析:求轨迹的方法很多,注意合理选取,参数法求轨迹方程是常用方法之一,常用到的参数有斜率、点的坐标、长度、夹角等.
科目:高中数学 来源: 题型:
| MP0 |
| ||
| 2 |
| pp0 |
查看答案和解析>>
科目:高中数学 来源:训练必修二数学人教A版 人教A版 题型:044
设AB是圆x2+y2=1的一条直径,以AB为直角边、B为直角顶点,逆时针方向作等腰Rt△ABC.当AB变动时,求C点的轨迹.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年湖北省武汉市武昌区高三上学期期末调研测试理科数学试卷(解析版) 题型:解答题
(本题满分13分)
设点P是圆x2 +y2 =4上任意一点,由点P向x轴作垂线PP0,垂足为Po,且
.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)设直线
:y=kx+m(m≠0)与(Ⅰ)中的轨迹C交于不同的两点A,B.
(1)若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围;
(2)若以AB为直径的圆过曲线C与x轴正半轴的交点Q,求证:直线
过定点(Q点除外),并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
设点P是圆x2 +y2 =4上任意一点,由点P向x轴作垂线PP0,垂足为Po,且
.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)设直线
:y=kx+m(m≠0)与(Ⅰ)中的轨迹C交于不同的两点A,B.
(1)若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围;
(2)若以AB为直径的圆过曲线C与x轴正半轴的交点Q,求证:直线
过定点(Q点除外),并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com