精英家教网 > 高中数学 > 题目详情

AB是圆x2+y2=1的一条直径,以AB为直角边、B为直角顶点,逆时针方向作等腰直角三角形ABC.当AB变动时,求C点的轨迹.

所求轨迹是以原点为圆心,为半径的圆.


解析:

解法一:(参数法)取∠xOB=θ为参数,则B(cosθ,sinθ),

于是,(x-cosθ)2+(y-sinθ)2=4.

=-cotθ,消去θx2+y2=5.

故所求轨迹是以原点为圆心,为半径的圆.

解法二:(相关点法)设C(x,y)、B(x0,y0),

x0y0≠0时,

则(xx0)2+(yy0)2=4.

·=-1.由x02+y02=1消去x0y0得轨迹方程.显然当x0=0或y0=0时,方程也适合.

解法三:(几何法)连结CO,因为|OC|2=|OB|2+|AB|2=5为定值,故其轨迹为圆.

评析:求轨迹的方法很多,注意合理选取,参数法求轨迹方程是常用方法之一,常用到的参数有斜率、点的坐标、长度、夹角等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设点P是圆x2+y2=4上任意一点,由点P向x轴作垂线PP0,垂足为Po,且
MP0
=
3
2
pp0

(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)设直线l:y=kx+m(m≠0)与(Ⅰ)中的轨迹C交于不同的两点A,B.
(1)若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围;
(2)若以AB为直径的圆过曲线C与x轴正半轴的交点Q,求证:直线l过定点(Q点除外),并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:训练必修二数学人教A版 人教A版 题型:044

设AB是圆x2+y2=1的一条直径,以AB为直角边、B为直角顶点,逆时针方向作等腰Rt△ABC.当AB变动时,求C点的轨迹.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省武汉市武昌区高三上学期期末调研测试理科数学试卷(解析版) 题型:解答题

(本题满分13分)

设点P是圆x2 +y2 =4上任意一点,由点P向x轴作垂线PP0,垂足为Po,且

(Ⅰ)求点M的轨迹C的方程;

(Ⅱ)设直线:y=kx+m(m≠0)与(Ⅰ)中的轨迹C交于不同的两点A,B.

(1)若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围;

(2)若以AB为直径的圆过曲线C与x轴正半轴的交点Q,求证:直线过定点(Q点除外),并求出该定点的坐标.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

     设点P是圆x2 +y2 =4上任意一点,由点P向x轴作垂线PP0,垂足为Po,且

    (Ⅰ)求点M的轨迹C的方程;

    (Ⅱ)设直线:y=kx+m(m≠0)与(Ⅰ)中的轨迹C交于不同的两点A,B.

        (1)若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围;

        (2)若以AB为直径的圆过曲线C与x轴正半轴的交点Q,求证:直线过定点(Q点除外),并求出该定点的坐标.

查看答案和解析>>

同步练习册答案