精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)求证:数学公式是f(x)≥b的充要条件;
(2)若x∈(0,1]时,f(x)≥b恒成立,求b的取值范围.

(1)证明:由题意,
当且仅当时,函数取得最小值.
要使f(x)≥b,即使,故得证;
(2)当0<a≤1时,函数的最小值为,f(x)≥b恒成立,则使
当a>1时,函数的最小值为2a+2,f(x)≥b恒成立,则使b≤2a+2

分析:(1)将函数变形,从而可利用基本不等式求函数的最小值,从而得证;
(2)对于x∈(0,1],分类讨论,分别求函数在区间上的最小值,从而可解.
点评:本题以函数为载体,考查恒成立问题,关键是求出函数的最值,注意分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年安徽省合肥市高三第一次教学质量检测文科数学试卷(解析版) 题型:解答题

已知函数

1求证:时,恒成立;

2时,求的单调区间

 

查看答案和解析>>

科目:高中数学 来源:2014届云南省高二下学期期末考试文科数学试卷(解析版) 题型:解答题

已知函数

(1)求证:

(2)解不等式

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年宁夏高三第五次月考理科数学试卷(解析版) 题型:解答题

(本小题满分l0分)选修4—5:不等式选讲

已知函数

(1)求证:

(2)解不等式.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西吉安宁冈中学高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

已知函数

(1)求证函数在区间上存在唯一的极值点,并用二分法求函数取得极值时相应的近似值(误差不超过);(参考数据

(2)当时,若关于的不等式恒成立,试求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省鹰潭市高三第二次模拟考试理科数学卷 题型:解答题

已知函数

(1)求证函数在区间上存在唯一的极值点,并用二分法求函数取得极值时相应的近似值(误差不超过);(参考数据

(2)当时,若关于的不等式恒成立,试求实数的取值范围.

 

 

查看答案和解析>>

同步练习册答案