精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)的图象与函数g(x)=($\frac{1}{3}$)x的图象关于y轴对称,且f(a)<f(2a+l),则实数a的取值范围是(-1,+∞).

分析 先求出f(x),再根据f(x)的单调性即可求出a的取值范围.

解答 解:f(x)的图象与g(x)=($\frac{1}{3}$)x的图象关于y轴对称,
∴f(x)=3x
∴函数f(x)为增函数,
∵f(a)<f(2a+l),
∴a<2a+1
解得a>-1,
故a的取值范围为(-1,+∞).
故答案为(-1,+∞).

点评 本题考查了指数函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.甲乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.记甲赢的概率为p1,乙赢的概率为p2,则有(  )
A.p1<p2B.p1>p2C.p1=p2D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某造纸厂拟建一座平面图形为矩形且面积为162 平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400 元/米,中间两道隔墙建造单价为248 元/米,池底建造单价为80 元/米2,水池所有墙的厚度忽略不计.
(1 )试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2 )若由于地形限制,该池的长和宽都不能超过16 米,试设计污水池的长和宽,使总造价最低.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x∈{0,2,x2),则实数x的值为(  )
A.1B.2C.0或1或2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x2-2(a+1)x-2在(4,+∞)上是增函数,则实数a的取值范围是(  )
A.(-∞,3]B.(-∞,1)C.[3,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)是奇函数,且在(0,+∞)上是增函数,又f(-3)=0,则f(x)<0的解是(  )
A.(-3,0)∪(1,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知定义域为R的函数$f(x)=a-\frac{2}{{1+{2^x}}}$是奇函数.
(1)求a的值;
(2)若对任意的x∈R,不等式f(x2-2x)+f(t-x)>0恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解关于x的不等式$\frac{ax-2}{x-1}$>0(a>0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$\overrightarrow{OP}$=(cosθ,sinθ),$\overrightarrow{OQ}$=(1+sinθ,1+cosθ),且0≤θ≤π.
(1)求$\overrightarrow{PQ}$模的最大值,并求出当|$\overrightarrow{PQ}$|取最大值时θ的值;
(2)当|$\overrightarrow{PQ}$|取最大值时,求$\overrightarrow{OP}$与$\overrightarrow{OQ}$的夹角φ(用反三角函数表示).

查看答案和解析>>

同步练习册答案