精英家教网 > 高中数学 > 题目详情
已知椭圆方程为
x2
4
+
y2
3
=1
,试确定m的范围,使得椭圆上有不同的两点关于直线y=4x+m对称.
分析:根据对称性可知线段AB被直线y=4x+m垂直平分,从而可得直线AB的斜率k=-
1
4
,直线AB与椭圆有两个交点,且AB的中点M在直线y=4x+m,可设直线AB 的方程为y=-
1
4
x+b
,联立方程
y=-
x
4
+b
x2
4
+
y2
3
=1
整理可得13x2-8bx+16(b2-3)=0可求中点M,由△=64b2-4×13×16(b2-3)>0可求b的范围,由中点M在直线y=4x+m可得m,b 的关系,从而可求m的范围
解答:解:设椭圆上关于直线y=4x+m对称的点A(x1,y1),B(x2,y2),
则根据对称性可知线段AB被直线y=4x+m垂直平分.
可得直线AB的斜率k=-
1
4
,直线AB与椭圆有两个交点,且AB的中点M(x0,y0)在直线y=4x+m,
故可设直线AB 的方程为y=-
1
4
x+b

y=-
x
4
+b
x2
4
+
y2
3
=1
整理可得13x2-8bx+16(b2-3)=0,
所以x1+x2=
8b
13
y1+y2=-
1
4
(x1 +x2)+2b=
24b
13

由△=64b2-4×13×16(b2-3)>0可得,-
13
2
<b < 
13
2

所以x0=
4b
13
y0=
12b
13
代入直线y=4x+m可得m=
-4b
13

所以,-
2
13
13
<m<
2
13
13
点评:本题主要考查了直线与椭圆的位置关系的应用,解题的关键是灵活应用已知中的对称性设出直线方程,且由中点在y=4x+m上建立m,b之间的关系,还要注意方程的根与系数的关系的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆方程为
x2
4
+
y2
3
=1
,右焦点F(1,0),准线上一点C(4,3
3
)
,过点F的直线l交椭圆与A、B两点.
(1)若直线l的倾斜角为
2
3
π
,A点纵坐标为正数,求S△CAF
(2)证明直线AC和直线BC斜率之和为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆方程为
x2
4
+y2=1
,则它的离心率是(  )
A、
3
2
B、
5
2
C、
2
3
3
D、
2
5
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆方程为
x2
4
+y2=1
,则它的离心率是(  )
A.
3
2
B.
5
2
C.
2
3
3
D.
2
5
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为
x2
4
+
y2
3
=1
,试确定m的范围,使得椭圆上有不同的两点关于直线y=4x+m对称.

查看答案和解析>>

同步练习册答案