【题目】已知函数,其中且,设.
(Ⅰ)求函数的定义域,判断的奇偶性,并说明理由;
(Ⅱ)若,求使成立的的集合.
【答案】(Ⅰ) 定义域为;为奇函数;(Ⅱ).
【解析】
(Ⅰ) 函数的定义域为定义域的交集,分别求出的定义域然后求交集即可求出的定义域;根据奇偶性的定义判断的奇偶性即可.
(Ⅱ)因为,所以求出a=2,代入利用对数不等式的解法求使的的集合.
(1)∵f(x)=loga(2+x)的定义域为{x|x>-2},
g(x)=loga(2-x)的定义域为{x|x<2},
∴h(x)=f(x)-g(x)的定义域为{x|x>-2}∩{x|x<2}={x|-2<x<2}.
∵h(x)=f(x)-g(x)=loga(2+x)-loga(2-x),
∴h(-x)=loga(2-x)-loga(2+x)=-[loga(2+x)-loga(2-x)]=-h(x),
∴h(x)为奇函数.
(2)∵f(2)=loga(2+2)=loga4=2,∴a=2.
∴h(x)=log2(2+x)-log2(2-x),
∴h(x)<0等价于log2(2+x)<log2(2-x),
∴ ,
解得-2<x<0.
故使h(x)<0成立的x的集合为{x|-2<x<0}.
科目:高中数学 来源: 题型:
【题目】对在直角坐标系的第一象限内的任意两点作如下定义:若,那么称点是点的“上位点”同时点是点的“下位点”
(1)试写出点的一个“上位点”坐标和一个“下位点”坐标;
(2)已知点是点的“上位点”,判断是否一定存在点满足既是点的“上位点”,又是点的“下位点”若存在,写出一个点坐标,并证明:若不存在,则说明理由;
(3)设正整数满足以下条件:对集合,总存在,使得点既是点的“下位点”,又是点的“上位点”,求正整数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的图像经过点 ,且满足,
(1)求的解析式;
(2)已知,求函数在的最大值和最小值;
函数的图像上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线和直线在该直角坐标系下的普通方程;
(2)动点在曲线上,动点在直线上,定点的坐标为,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于的不等式的解集为;
(1)若,求的取值范围;
(2)若存在两个不相等负实数、,使得,求实数的取值范围;
(3)是否存在实数,满足:“对于任意,都有,对于任意的,都有”,若存在,求出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了增强消防安全意识,某中学对全体学生做了一次消防知识讲座,从男生中随机抽取人,从女生中随机抽取人参加消防知识测试,统计数据得到如下列联表:
优秀 | 非优秀 | 总计 | |
男生 | |||
女生 | |||
总计 |
(1)试判断能否有的把握认为消防知识的测试成绩优秀与否与性别有关;
附:
(2)为了宣传消防知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出人组成宣传小组.现从这人中随机抽取人到校外宣传,求到校外宣传的同学中男生人数的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com