精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|m﹣1≤x≤2m+3},函数f(x)=lg(﹣x2+2x+8)的定义域为B.
(1)当m=2时,求A∪B、(RA)∩B;
(2)若A∩B=A,求实数m的取值范围.

【答案】
(1)解:根据题意,当m=2时,A={x|1≤x≤7},B={x|﹣2<x<4},

则A∪B={x|﹣2<x≤7},

RA={x|x<1或x>7},

则(RA)∩B={x|﹣2<x<1}


(2)解:根据题意,若A∩B=A,则AB,

分2种情况讨论:

①、当A=时,有m﹣1>2m+3,解可得m<﹣4,

②、当A≠时,

若有AB,必有 ,解可得﹣1<m<

综上可得:m的取值范围是:(﹣∞,﹣4)∪(﹣1,


【解析】(1)根据题意,由m=2可得A={x|1≤x≤7},由并集定义可得A∪B的值,由补集定义可得RA={x|x<1或x>7},进而由交集的定义计算可得(RA)∩B,即可得答案;(2)根据题意,分析可得AB,进而分2种情况讨论:①、当A=时,有m﹣1>2m+3,②、当A≠时,有 ,分别求出m的取值范围,进而对其求并集可得答案.
【考点精析】解答此题的关键在于理解交、并、补集的混合运算的相关知识,掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点P在直线x+3y﹣2=0上,点Q在直线x+3y+6=0上,线段PQ的中点为M(x0 , y0),且y0<x0+2,则 的取值范围是(
A.[﹣ ,0)
B.(﹣ ,0)
C.(﹣ ,+∞)
D.(﹣∞,﹣ )∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a(|sinx|+|cosx|)﹣ sin2x﹣1,若f( )=
(1)求a的值,并写出函数f(x)的最小正周期(不需证明);
(2)是否存在正整数k,使得函数f(x)在区间[0,kπ]内恰有2017个零点?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(1)若成绩在区间[14,16)内规定为良好,求该班在这次百米测试中成绩为良好的人数;
(2)请根据频率分布直方图估计样本数据的众数和中位数(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2﹣(1+a)x+y2﹣ay+a=0(a∈R). (Ⅰ) 若a=1,求直线y=x被圆C所截得的弦长;
(Ⅱ) 若a>1,如图,圆C与x轴相交于两点M,N(点M在点N的左侧).过点M的动直线l与圆O:x2+y2=4相交于A,B两点.问:是否存在实数a,使得对任意的直线l均有∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈R,cosx=2;命题q:x∈R,x2﹣x+1>0,则下列结论中正确的是(
A.p∨q是假命题
B.p∧q是真命题
C.(¬p)∧(¬q)是真命题
D.(¬p)∨(¬q)是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx﹣ )( <ω<2),在区间(0, )上(
A.既有最大值又有最小值
B.有最大值没有最小值
C.有最小值没有最大值
D.既没有最大值也没有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合M={x|﹣a<x<a+1,a∈R},集合N={x|x2﹣2x﹣3≤0}.
(1)当a=1时,求M∪N及N∩RM;
(2)若x∈M是x∈N的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P为椭圆 + =1上一点,F1 , F2为左右焦点,若∠F1PF2=60°.
(1)求△F1PF2的面积;
(2)求P点的坐标.

查看答案和解析>>

同步练习册答案