精英家教网 > 高中数学 > 题目详情
(1)设f(x)=2x,g(x)=4x,若g[g(x)]>g[f(x)]>f[g(x)],求x的最大取值范围.
(2)若函数y=4x-3•2x+3的值域为[1,7],求x的取值范围.
分析:(1)由题意可得,g[g(x)]=g(4x)=44x,f[g(x)]=f(4x)=24x,g(f(x))=g(2x)=42x,由g[g(x)]>g[f(x)]>f[g(x)],代入可求
(2)y=4x-3•2x+3=22x-3•2x+3,依题意有
(2x)2-3•2x+3≤7
(2x)2-3•2x+3≥1
,解不等式可求
解答:解:(1)g[g(x)]=g(4x)=44x,f[g(x)]=f(4x)=24x,g(f(x))=g(2x)=42x
∵g[g(x)]>g[f(x)]>f[g(x)]
44x42x24x
∴22x+1>2x+1>22x
∴2x+1>x+1>2x,
解得0<x<1
(2)y=4x-3•2x+3=22x-3•2x+3,依题意有
(2x)2-3•2x+3≤7
(2x)2-3•2x+3≥1

-1≤2x≤4
2x≥2或2x≤1

∴2≤2x≤4或0<2x≤1,
由函数y=2x的单调性可得x∈(-∞,0]∪[1,2].
点评:本题主要考查了指数函数的单调性的应用,解题的关键是熟练应用指数函数的性质,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的范围;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三个不同的实数解,求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

7、设的定义在R上以2为周期的偶函数,当x∈[2,3]时,f(x)=x则x∈[-2,0]时,的解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设f(x)是定义在R上奇函数,且当x>0时,f(x)=2x-3,则当x<0时,f(x)表达式为
 

(2)设f(x)是定义在R上奇函数,且f(x+1)=-f(x),当x∈(0,1)时,f(x)=2x-3,则x∈(3,4)时,f(x)表达式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[0,1]且同时满足:①对任意x∈[0,1]总有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)=f(x1)+f(x2)-2.
(I)求f(0)的值;
(II)求f(x)的最大值;
(III)设数列{an}的前n项和为Sn,且Sn=-
12
(an-3)(n∈N*)
,求f(a1)+f(a2)+…+f(an).

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
2(x>0)
0(x=0)
-2(x<0)
,g(x)=
1(x为有理数)
0(x为无理数)
,则f[g(π)]的值为(  )

查看答案和解析>>

同步练习册答案