精英家教网 > 高中数学 > 题目详情
14.明代程大位所著《算法统宗》中记载“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,总共有灯381盏,为这个塔顶层有几盏灯?(  )
A.2盏B.3盏C.4盏D.5盏

分析 设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a的值.

解答 解:设这个塔顶层有a盏灯,
∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,
∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,
又总共有灯381盏,∴381=$\frac{a(1-{2}^{7})}{1-2}$=127a,解得a=3,
则这个塔顶层有3盏灯,
故选B.

点评 本题考查了等比数列的定义,以及等比数列的前n项公式的实际应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.某三棱锥的三视图如图所示,则该三棱锥的四个面中,面积最大的面的面积是(  )
A.$4\sqrt{3}$B.$2\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(1,0),则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的正射影的数量为(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知m=$\frac{tan22.5°}{1-ta{n}^{2}22.5°}$,则函数y=2m•x+$\frac{3}{x-1}$+1(x>1)的最小值是(  )
A.2B.2$\sqrt{3}$C.2+2$\sqrt{3}$D.2$\sqrt{3}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.长方体截去一个三棱锥后的直观图和部分三视图如图所示.
(1)画出这个几何体的俯视图,并求截面AEF的面积;
(2)若M为EF的中点,求直线AM与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义在实数集R上的函数f(x)满足:f(2)=1,且对于任意的x∈R,都有f′(x)<$\frac{1}{3}$,则不等式f(log2x)>$\frac{lo{g}_{2}x+1}{3}$的解集为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某小区物业加强对员工服务宗旨教育,服务意识和服务水平不断提高,某服务班组经常收到表扬电话和表扬信.设该班组一周内收到表扬电话和表扬信的次数用X表示,据统计,随机变量X的概率分布如下:
X0123
P0.10.32aa
(1)求a的值和X的数学期望;
(2)假设某月第一周和第二周收到表扬电话和表扬信的次数互不影响,求该班组在这两周内共收到表扬电话和表扬信2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示为某篮球队员身高的茎叶图,则身高不低于180cm的人数为(  )
A.4B.5C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果方程x2+y2+4x+2y+4k+1=0表示圆,那么k的取值范围是(  )
A.(-∞,+∞)B.(-∞,1)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

同步练习册答案