【题目】在四棱锥中,底面是矩形, 平面, ,以的中点为球心, 为直径的球面交于点,交于点.
(1)求证:平面平面;
(2)求点到平面的距离.
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx﹣ )(A>0,ω>0)的最大值为2,其图象相邻两条对称轴之间的距离为 . (Ⅰ)求函数f(x)的最小正周期及解析式;
(Ⅱ)求函数f(x)的单调减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足an+1=a ﹣nan+1,且a1=2.
(1)计算a2 , a3 , a4的值,由此猜想数列{an}的通项公式,并用数学归纳法证明;
(2)求证:2nn≤a <3nn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 的图象过点(﹣1,2),且在点(﹣1,f(﹣1))处的切线与直线x﹣5y+1=0垂直.
(1)求实数b,c的值;
(2)求f(x)在[﹣1,e](e为自然对数的底数)上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: =1(a>b>0)上任意一点到两焦点距离之和为 ,离心率为 ,左、右焦点分别为F1 , F2 , 点P是右准线上任意一点,过F2作直线PF2的垂线F2Q交椭圆于Q点.
(1)求椭圆E的标准方程;
(2)证明:直线PQ与直线OQ的斜率之积是定值;
(3)证明:直线PQ与椭圆E只有一个公共点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0,a≠1且loga3>loga2,若函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为1.
(1)求a的值;
(2)解不等式 ;
(3)求函数g(x)=|logax﹣1|的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=( + )x3(a>0,a≠1).
(1)讨论函数f(x)的奇偶性;
(2)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为函数图像的一部分,其中点是图像的一个最高点,点是与点相邻的图像与轴的一个交点.
⑴ 求函数的解析式;
⑵ 若将函数的图像沿轴向右平移个单位,再把所得图像上每一点的横坐标都变为原来的(纵坐标不变),得到函数的图像,求函数的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2013年第三季度,国家电网决定对城镇居民用电计费标准作出调整,并根据用电情况将居民分为三类:第一类的用电区间在(0,170],第二类在(170,260],第三类在(260,+∞)(单位:千瓦时).某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图,如图所示.
(1)求该小区居民用电量的中位数与平均数;
(2)本月份该小区没有第三类的用电户出现,为鼓励居民节约用电,供电部门决定:对第一类每户奖励20元钱,第二类每户奖励5元钱,求每户居民获得奖励的平均值;
(3)利用分层抽样的方法从该小区内选出5位居民代表,若从该5户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com