Èçͼ£¬ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÓÐÒ»×é¶Ô½ÇÏß³¤ÎªanµÄÕý·½ÐÎAnBnCnDn£¨n=1£¬2£¬¡­£©£¬Æä¶Ô½ÇÏßBnDnÒÀ´Î·ÅÖÃÔÚxÖáÉÏ£¨ÏàÁÚ¶¥µãÖغϣ©£®Éè{an}ÊÇÊ×ÏîΪa£¬¹«²îΪd£¨d£¾0£©µÄµÈ²îÊýÁУ¬µãB1µÄ×ø±êΪ£¨d£¬0£©£®
£¨1£©µ±a=8£¬d=4ʱ£¬Ö¤Ã÷£º¶¥µãA1¡¢A2¡¢A3²»ÔÚͬһÌõÖ±ÏßÉÏ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö¤Ã÷£ºËùÓж¥µãAn¾ùÂäÔÚÅ×ÎïÏßy2=2xÉÏ£»
£¨3£©ÎªÊ¹ËùÓж¥µãAn¾ùÂäÔÚÅ×ÎïÏßy2=2px£¨p£¾0£©ÉÏ£¬ÇóaÓëdÖ®¼äËùÓ¦Âú×ãµÄ¹Øϵʽ£®

¡¾´ð°¸¡¿·ÖÎö£º£¨1£©Çó³öA1A2¡¢A1A3µÄбÂÊ£¬ÀûÓÃбÂʲ»ÏàµÈ£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©È·¶¨¶¥µãAnµÄºá×ø±ê¡¢×Ý×ø±ê£¬¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨3£©¶¥µãAnµÄºá¡¢×Ý×ø±ê£¬ÏûÈ¥n-1£¬ÀûÓÃËùÓж¥µãAn¾ùÂäÔÚÅ×ÎïÏßy2=2px£¨p£¾0£©ÉÏ£¬¼´¿ÉÇóaÓëdÖ®¼äËùÓ¦Âú×ãµÄ¹Øϵʽ£®
½â´ð£º£¨1£©Ö¤Ã÷£ºÓÉÌâÒâ¿ÉÖª£¬A1£¨8£¬4£©£¬A2£¨18£¬6£©£¬A3£¨32£¬8£©£¬
¡à£®
¡ß£¬
¡à¶¥µãA1¡¢A2¡¢A3²»ÔÚͬһÌõÖ±ÏßÉÏ£»
£¨2£©Ö¤Ã÷£ºÓÉÌâÒâ¿ÉÖª£¬¶¥µãAnµÄºá×ø±ê=2£¨n+1£©2£¬
¶¥µãAnµÄ×Ý×ø±ê£®
¡ß¶ÔÈÎÒâÕýÕûÊýn£¬µãAn£¨xn£¬yn£©µÄ×ø±êÂú×ã·½³Ìy2=2x£¬
¡àËùÓж¥µãAn¾ùÂäÔÚÅ×ÎïÏßy2=2xÉÏ£®
£¨3£©½â£ºÓÉÌâÒâ¿ÉÖª£¬¶¥µãAnµÄºá¡¢×Ý×ø±ê·Ö±ðÊÇ£¬
ÏûÈ¥n-1£¬¿ÉµÃ
ΪʹµÃËùÓж¥µãAn¾ùÂäÔÚÅ×ÎïÏßy2=2px£¨p£¾0£©ÉÏ£¬ÔòÓÐ
½âÖ®£¬µÃd=4p£¬a=8p£®
¡àa£¬dËùÓ¦Âú×ãµÄ¹ØϵʽÊÇ£ºa=2d£®
µãÆÀ£º±¾Ì⿼²éÇúÏßÓë·½³Ì£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•º¼ÖݶþÄ££©Èçͼ£¬ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Èñ½Ç¡÷ABCÄÚ½ÓÓÚÔ²x2+y2=1£®ÒÑÖªBCƽÐÐÓÚxÖᣬABËùÔÚÖ±Ïß·½³ÌΪy=kx+m£¨k£¾0£©£¬¼Ç½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðÊÇa£¬b£¬c£®
£¨1£©Èô3k=
2ac
a2+c2-b2
£¬Çócos2
A+C
2
+sin2B
掙术
£¨2£©Èôk=2£¬¼Ç¡ÏxOA=¦Á(0£¼¦Á£¼
¦Ð
2
)£¬¡ÏxOB=¦Â(¦Ð£¼¦Â£¼
3¦Ð
2
)£¬Çósin(¦Á+¦Â)
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÔÚÖ±½Ç×ø±êϵÖУ¬ÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚXÖáÉϵÄÍÖÔ²GµÄÀëÐÄÂÊΪe=
15
4
£¬×󶥵ãA£¨-4£¬0£©£¬Ô²O'£º£¨x-2£©2+y2=r2ÊÇÍÖÔ²GµÄÄÚ½Ó¡÷ABCµÄÄÚÇÐÔ²£®
£¨¢ñ£© ÇóÍÖÔ²GµÄ·½³Ì£»
£¨¢ò£©ÇóÔ²O'µÄ°ë¾¶r£»
£¨¢ó£©¹ýM£¨0£¬1£©×÷Ô²GµÄÁ½ÌõÇÐÏß½»ÍÖÔ²ÓÚE£¬FÁ½µã£¬ÅжÏÖ±ÏßEFÓëÔ²O'µÄλÖùØϵ£¬²¢Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ê¯¾°É½Çø¶þÄ££©Èçͼ£¬ÔÚÖ±½Ç×ø±êϵxOyÖУ¬½Ç¦ÁµÄ¶¥µãÊÇÔ­µã£¬Ê¼±ßÓëxÖáÕý°ëÖáÖغϣ¬Öձ߽»µ¥Î»Ô²ÓÚµãA£¬ÇÒ¦Á¡Ê(
¦Ð
6
£¬
¦Ð
2
)
£®½«½Ç¦ÁµÄÖձ߰´ÄæʱÕë·½ÏòÐýת
¦Ð
3
£¬½»µ¥Î»Ô²ÓÚµãB£®¼ÇA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
£¨¢ñ£©Èôx1=
1
3
£¬Çóx2£»
£¨¢ò£©·Ö±ð¹ýA£¬B×÷xÖáµÄ´¹Ïߣ¬´¹×ãÒÀ´ÎΪC£¬D£®¼Ç¡÷AOCµÄÃæ»ýΪS1£¬¡÷BODµÄÃæ»ýΪS2£®ÈôS1=2S2£¬Çó½Ç¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÔÚÖ±½Ç×ø±êϵxOyÖУ¬½Ç¦ÁµÄ¶¥µãÊÇÔ­µã£¬Ê¼±ßÓëxÖáÕý°ëÖáÖغϣ¬Öձ߽»µ¥Î»Ô²ÓÚµãA£¬ÇÒ¦Á¡Ê(
¦Ð
3
£¬
¦Ð
2
)
£®½«½Ç¦ÁµÄÖձ߰´ÄæʱÕë·½ÏòÐýת
¦Ð
6
£¬½»µ¥Î»Ô²ÓÚµãB£®¼ÇA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
£¨¢ñ£©Èôx1=
1
4
£¬Çóx2£» 
£¨¢ò£©·Ö±ð¹ýA£¬B×÷xÖáµÄ´¹Ïߣ¬´¹×ãÒÀ´ÎΪC£¬D£®¼Ç¡÷AOCµÄÃæ»ýΪS1£¬¡÷BODµÄÃæ»ýΪS2£®ÈôS1=S2£¬Çó½Ç¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÉäÏßOA£ºx-y=0£¨x¡Ý0£©£¬OB£º
3
x+3y=0£¨x¡Ý0£©£¬¹ýµãP£¨a£¬0£©£¨a£¾0£©×÷Ö±Ïßl·Ö±ð½»ÉäÏßOA£¬OBÓÚA£¬BÁ½µã£¬ÇÒ
AP
=2
PB
£¬ÔòÖ±ÏßlµÄбÂÊΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸