精英家教网 > 高中数学 > 题目详情
(2013•石景山区二模)如图,在直角坐标系xOy中,角α的顶点是原点,始边与x轴正半轴重合,终边交单位圆于点A,且α∈(
π
6
π
2
)
.将角α的终边按逆时针方向旋转
π
3
,交单位圆于点B.记A(x1,y1),B(x2,y2).
(Ⅰ)若x1=
1
3
,求x2
(Ⅱ)分别过A,B作x轴的垂线,垂足依次为C,D.记△AOC的面积为S1,△BOD的面积为S2.若S1=2S2,求角α的值.
分析:(Ⅰ)由三角函数定义,得 x1=cosα=
1
3
,由此利用同角三角函数的基本关系求得sinα的值,再根据x2=cos(α+
π
3
)
,利用两角和的余弦公式求得结果.
(Ⅱ)依题意得 y1=sinα,y2=sin(α+
π
3
)
,分别求得S1 和S2 的解析式,再由S1=2S2 求得cos2α=0,根据α的范围,求得α的值.
解答:(Ⅰ)解:由三角函数定义,得 x1=cosα,x2=cos(α+
π
3
)

因为 α∈(
π
6
π
2
)
cosα=
1
3
,所以 sinα=
1-cos2α
=
2
2
3

所以 x2=cos(α+
π
3
)=
1
2
cosα-
3
2
sinα=
1-2
6
6

(Ⅱ)解:依题意得 y1=sinα,y2=sin(α+
π
3
)
. 所以 S1=
1
2
x1y1=
1
2
cosα•sinα=
1
4
sin2α

S2=
1
2
|x2|y2=
1
2
[-cos(α+
π
3
)]•sin(α+
π
3
)=-
1
4
sin(2α+
3
)

依题意S1=2S2 得 sin2α=-2sin(2α+
3
)
,即sin2α=-2[sin2αcos
3
+cos2αsin
3
]=sin2α-
3
cos2α,
整理得 cos2α=0.
因为 
π
6
<α<
π
2
,所以 
π
3
<2α<π
,所以 2α=
π
2
,即 α=
π
4
点评:本题主要考查任意角的三角函数的定义,两角和差的正弦公式、余弦公式,同角三角函数的基本关系的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•石景山区二模)对于直线m,n和平面α,β,使m⊥α成立的一个充分条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区一模)若直角坐标平面内的两点P、Q满足条件:
①P、Q都在函数y=f(x)的图象上;
②P、Q关于原点对称,则称点对[P,Q]是函数y=f(x)的一对“友好点对”(点对[P,Q]与[Q,P]看作同一对“友好点对”),
已知函数f(x)=
log2x(x>0)
-x2-4x(x≤0)
,则此函数的“友好点对”有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区一模)设集合M={x|x2≤4),N={x|log2 x≥1},则M∩N等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区一模)某四棱锥的三视图如图所示,则最长的一条侧棱长度是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区一模)将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m,第二次出现的点数为n,向量
p
=(m,n),
q
=(3,6),则向量
p
q
共线的概率为(  )

查看答案和解析>>

同步练习册答案