精英家教网 > 高中数学 > 题目详情
(2013•石景山区一模)将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m,第二次出现的点数为n,向量
p
=(m,n),
q
=(3,6),则向量
p
q
共线的概率为(  )
分析:利用古典概型的概率计算公式和向量共线定理即可得出.
解答:解:由题意可得:基本事件(m,n)(m,n=1,2,…,6)的个数=6×6=36.
p
q
,则6m-3n=0,得到n=2m.满足此条件的共有(1,2),(2,4),(3,6)三个基本事件.
因此向量
p
q
共线的概率P=
3
36
=
1
12

故选D.
点评:熟练掌握古典概型的概率计算公式和向量共线定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•石景山区二模)对于直线m,n和平面α,β,使m⊥α成立的一个充分条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区一模)若直角坐标平面内的两点P、Q满足条件:
①P、Q都在函数y=f(x)的图象上;
②P、Q关于原点对称,则称点对[P,Q]是函数y=f(x)的一对“友好点对”(点对[P,Q]与[Q,P]看作同一对“友好点对”),
已知函数f(x)=
log2x(x>0)
-x2-4x(x≤0)
,则此函数的“友好点对”有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区一模)设集合M={x|x2≤4),N={x|log2 x≥1},则M∩N等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区一模)某四棱锥的三视图如图所示,则最长的一条侧棱长度是(  )

查看答案和解析>>

同步练习册答案