精英家教网 > 高中数学 > 题目详情
9.在正棱柱ABC-A1B1C1中,D是AC的中点,AA1:AB=$\sqrt{2}$:1,则异面直线AB1与BD所成的角为(  )
A.30°B.45°C.60°D.90°

分析 (几何法)
设AA1=$\sqrt{2}$,AB=1,取A1C1的中点E,连结B1E,AE,则B1E∥BD,∠AB1E是异面直线AB1与BD所成的角(或所成角的补角),由此利用余弦定理能求出异面直线AB1与BD所成的角.
(向量法)
设AA1=$\sqrt{2}$,AB=1,以A为原点,过A在平面ABC内作AC的垂线为x轴,以AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AB1与BD所成的角.

解答 解:(几何法)
∵在正棱柱ABC-A1B1C1中,D是AC的中点,AA1:AB=$\sqrt{2}$:1,
∴设AA1=$\sqrt{2}$,AB=1,
取A1C1的中点E,连结B1E,AE,则B1E∥BD,
∴∠AB1E是异面直线AB1与BD所成的角(或所成角的补角),
B1E=$\sqrt{{1}^{2}-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$,AB1=$\sqrt{2+1}=\sqrt{3}$,AE=$\sqrt{2+\frac{1}{4}}$=$\frac{3}{2}$,
∴cos∠AB1E=$\frac{A{{B}_{1}}^{2}+{B}_{1}{E}^{2}-A{E}^{2}}{2A{B}_{1}•{B}_{1}E}$=$\frac{3+\frac{3}{4}-\frac{9}{4}}{2•\sqrt{3}•\frac{\sqrt{3}}{2}}$=$\frac{1}{2}$,
∴∠AB1E=60°,
∴异面直线AB1与BD所成的角为60°.
故选:C.
(向量法)
∵在正棱柱ABC-A1B1C1中,D是AC的中点,AA1:AB=$\sqrt{2}$:1,
∴设AA1=$\sqrt{2}$,AB=1,
以A为原点,过A在平面ABC内作AC的垂线为x轴,以AC为y轴,AA1为z轴,建立空间直角坐标系,
A(0,0,0),B1($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,$\sqrt{2}$),B($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,0),D(0,$\frac{1}{2}$,0),
$\overrightarrow{A{B}_{1}}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,$\sqrt{2}$),$\overrightarrow{BD}$=(-$\frac{\sqrt{3}}{2}$,0,0),
设异面直线AB1与BD所成的角为θ,
则cosθ=$\frac{|\overrightarrow{A{B}_{1}}•\overrightarrow{BD}|}{|\overrightarrow{A{B}_{1}}|•|\overrightarrow{BD}|}$=$\frac{\frac{3}{4}}{\sqrt{3}•\frac{\sqrt{3}}{2}}$=$\frac{1}{2}$,
∴θ=60°,
∴异面直线AB1与BD所成的角为60°.
故选:C.

点评 本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知实数x,y满足约束条件$\left\{\begin{array}{l}{|x-2y+2|≤2}\\{|x+3y-8|≤2}\end{array}\right.$,则z=x+2y的最大值为(  )
A.4B.8C.$\frac{24}{5}$D.$\frac{36}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.i为虚数单位,复数$\frac{2i}{1-i}$在复平面内对应的点到原点的距离为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}的通项公式为an=$\frac{1}{n(n+2)}$,前n项和为Sn,若实数λ满足(-1)nλ<3+(-1)n+1Sn对任意正整数n恒成立,则实数λ的取值范围是(  )
A.$-\frac{10}{3}$<λ≤$\frac{9}{4}$B.$-\frac{10}{3}$<λ<$\frac{9}{4}$C.$-\frac{9}{4}$<λ≤$\frac{10}{3}$D.$-\frac{9}{4}$<λ<$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式$\frac{1-x}{x}$≤0的解集为{x|x<0,或x≥1 }.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=sin(2x+\frac{π}{3})+\sqrt{3}-2\sqrt{3}{cos^2}$x.
(1)求f(x)的最小正周期及其图象的对称中心;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{\frac{1}{16}{x}^{2}(0≤x≤2)}\\{(\frac{1}{2})^{x}(x>2)}\end{array}\right.$,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有5个不同实数根,则实数a的取值范围是(  )
A.(-$\frac{1}{4}$,0)B.($-\frac{1}{2}$,-$\frac{1}{4}$)C.($-\frac{1}{2}$,$-\frac{1}{4}$)∪($-\frac{1}{4}$,-$\frac{1}{8}$)D.(-$\frac{1}{2}$,$-\frac{1}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.[x]表示不超过x的最大整数,例如[1.7]=1,[-3.1]=-4,已知f(x)=x-[x](x∈R),g(x)=lg|x|,则函数h(x)=f(x)-g(x)的零点个数是(  )
A.15B.16C.17D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图程序框图的算法思路,源于我国南宋时期的数学家秦九韶在他的著作《数书九章》中提出的秦九韶算法,执行该程序框图,若输入的n,an,x分别为5,1,-2,且a4=5,a3=10,a2=10,a1=5,a0=1,则输出的v=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

同步练习册答案