精英家教网 > 高中数学 > 题目详情
9.求与圆x2+y2-2x+4y+4=0同心,并且从点A(4,3)向该圆所引的切线长等于5的圆的方程.

分析 求出圆心坐标,利用从点A(4,3)向该圆所引的切线长等于5,求出圆的半径,即可求出圆的方程.

解答 解:圆x2+y2-2x+4y+4=0可化为圆(x-1)2+(y+2)2=1,圆心C(1,-2),|CA|=$\sqrt{(4-1)^{2}+(3+2)^{2}}$=$\sqrt{34}$,
∵从点A(4,3)向该圆所引的切线长等于5,
∴r=$\sqrt{34-25}$=3,
∴圆的方程(x-1)2+(y+2)2=9.

点评 本题考查圆的方程,考查切线长的求解,确定圆的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知动圆过定点F(0,$\frac{1}{4}$),且与定直线l:y=-$\frac{1}{4}$相切.
(1)求动圆圆心的轨迹曲线C的方程;
(2)若点A(x0,y0)是直线x-y-1=0上的动点,过点A作曲线C的切线,切点记为M,N.求证:直线MN恒过定点,并求△AMN面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知:全集U={a2-2a-3,6,2},A={|a+3|,6},∁UA={0},则实数a的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数为奇函数的是 (  )
A.y=-|x|B.y=2-xC.y=$\frac{1}{{x}^{3}}$D.y=-x2+8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\frac{\sqrt{1-{x}^{2}}}{|x+2|+|x-1|}$,那么f(x)在其定义域上是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,Sn=$\frac{1}{3}$(an-1),n∈N*,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.向量$\overrightarrow{a}$=(cosx+sinx,$\sqrt{2}$cosx),$\overrightarrow{b}$=(cosx-sinx,$\sqrt{2}$sinx),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数f(x)的单调区间;
(2)若2x2-πx≤0,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\sqrt{{x}^{2}-8x+20}$+$\sqrt{{x}^{2}+1}$的最小值是5,此时x=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=lg(x2+ax-a+1),给出下列命题:
(1)f(x)一定有最小值;
(2)当a=0时,f(x)的值域为R;
(3)当a>0时,f(x)在[2,+∞)有反函数;
(4)若f(x)在区间[2,+∞)上单增,则实数a的范围a≥-4.
则其中正确的命题是(3)(4)(要求把正确的命题的序号都填上)

查看答案和解析>>

同步练习册答案