精英家教网 > 高中数学 > 题目详情
精英家教网已知空间四边形ABCD中,E、H分别为AB、AD的中点,F、G分别为BC、CD的中点.
(1)求证:四边形EFGH为平行四边形;
(2)若平行四边形EFGH为菱形,判断线段AC与线段BD的大小关系.
分析:(1)根据空间直线平行的性质即可证明四边形EFGH为平行四边形;
(2)根据平行四边形EFGH为菱形,即可判断线段AC与线段BD的大小关系.
解答:解:(1)∵E、H分别为AB、AD的中点,F、G分别为BC、CD的中点.
∴EH∥BD,且EH=
1
2
BD,
FG∥BD,且FG=
1
2
BD,
即EH∥FG,且EH=FG,
即四边形EFGH为平行四边形;
(2)若平行四边形EFGH为菱形,
则EH=EF,
∵E,F分别是AB,BC的中点,
∴EF∥AC,且EF=
1
2
AC,
又FG=
1
2
BD,
∴AC=BD.
点评:本题主要考查空间直线的位置关系的判断,利用中位线的性质是解决本题的根据,要求熟练掌握直线平行的平行公理的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.
求证:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G为△ADC的重心,试在线段AE上确定一点F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.
求证:(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点,求证:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G为△ADC的重心,试在线段AE上确定一点F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省高三12月月考文科数学卷 题型:解答题

(本小题满分12分)

如图,已知空间四边形ABCD中,BC=AC, AD=BD,E是AB的中点,

求证:

AB⊥平面CDE;

平面CDE⊥平面ABC;

若G为△ADC的重心,试在线段AB上确定一点F,使得GF∥平面CDE.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.
求证:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G为△ADC的重心,试在线段AE上确定一点F,使得GF平面CDE.
精英家教网

查看答案和解析>>

同步练习册答案