ÒÑÖªÊýÁÐ{an}¸÷Ïî¾ù²»ÏàµÈ£¬½«ÊýÁдÓСµ½´óÖØÐÂÅÅÐòºóÏàÓ¦µÄÏîÊý¹¹³ÉµÄÐÂÊýÁгÆÎªÊýÁÐ{an}µÄÅÅÐòÊýÁУ¬ÀýÈ磺ÊýÁÐa1£¬a2£¬a3Âú×ãa2£¼a3£¼a1£¬ÔòÅÅÐòÊýÁÐΪ2£¬3£¬1£®
£¨¢ñ£©Ð´³öÊýÁÐ2£¬4£¬3£¬1µÄÅÅÐòÊýÁУ»
£¨¢ò£©ÇóÖ¤£ºÊýÁÐ{an}µÄÅÅÐòÊýÁÐΪµÈ²îÊýÁеijäÒªÌõ¼þÊÇÊýÁÐ{an}Ϊµ¥µ÷ÊýÁУ»
£¨¢ó£©ÈôÊýÁÐ{an}µÄÅÅÐòÊýÁÐÈÔΪ{an}£¬ÄÇôÊÇ·ñÒ»¶¨´æÔÚÒ»Ïîak=k£¬Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö£º£¨¢ñ£©¸ù¾ÝÅÅÐòÊýÁе͍Òå¼´¿Éд³öÊýÁÐ2£¬4£¬3£¬1µÄÅÅÐòÊýÁУ»
£¨¢ò£©¸ù¾Ý³ä·ÖÌõ¼þºÍ±ØÒªÌõ¼þµÄ¶¨Òå½øÐÐÖ¤Ã÷£ºÊýÁÐ{an}µÄÅÅÐòÊýÁÐΪµÈ²îÊýÁеijäÒªÌõ¼þÊÇÊýÁÐ{an}Ϊµ¥µ÷ÊýÁУ»
£¨¢ó£©¸ù¾ÝÅÅÐòÊìÁ·µÄ¶¨Òå½øÐÐÅжϣ®
½â´ð£º½â£º£¨¢ñ£©ÅÅÐòÊýÁÐΪ4£¬1£¬3£¬2£®--------------------------------£¨3·Ö£©
£¨¢ò£©Ö¤Ã÷£º³ä·ÖÐÔ£º
µ±ÊýÁÐ{an}µ¥µ÷Ôöʱ£¬¡ßa1£¼a2£¼¡­£¼an£¬
¡àÅÅÐòÊýÁÐΪ1£¬2£¬3£¬¡­£¬n£®
¡àÅÅÐòÊýÁÐΪµÈ²îÊýÁУ®----------------------------------£¨4·Ö£©
µ±ÊýÁÐ{an}µ¥µ÷¼õʱ£¬¡ßan£¼an-1£¼¡­£¼a1£¬
¡àÅÅÐòÊýÁÐΪn£¬n-1£¬n-2£¬¡­£¬1£®
¡àÅÅÐòÊýÁÐΪµÈ²îÊýÁУ®
×ÛÉÏ£¬ÊýÁÐ{an}Ϊµ¥µ÷ÊýÁÐʱ£¬ÅÅÐòÊýÁÐΪµÈ²îÊýÁУ®---------£¨5·Ö£©
±ØÒªÐÔ£º
¡ßÅÅÐòÊýÁÐΪµÈ²îÊýÁÐ
¡àÅÅÐòÊýÁÐΪ1£¬2£¬3£¬¡­£¬n»òn£¬n-1£¬n-2£¬¡­£¬1£®--------------£¨7·Ö£©
¡àa1£¼a2£¼¡­£¼an»òan£¼an-1£¼¡­£¼a1
¡àÊýÁÐ{an}Ϊµ¥µ÷ÊýÁУ®-------------------------------------£¨8·Ö£©
£¨¢ó£©¡ßÊýÁÐ{an}µÄÅÅÐòÊýÁÐÈÔΪ{an}
¡àÊýÁÐ{an}ÊÇ1£¬2£¬3£¬¡­£¬nµÄijһ¸öÅÅÐò£¬----------------£¨9·Ö£©
¼ÙÉè²»´æÔÚÒ»Ïîak=k£¬¼´ai=j£¬£¨i¡Ùj£¬i=1£¬2£¬3£¬¡­£¬j=1£¬2£¬3£¬¡­£©
ÔòÔÚ¸÷Ïî´ÓСµ½´óÅÅÁкóaiÅÅÔÚµÚjλ--------------------£¨11·Ö£©
¡àÅÅÐòÊýÁÐ{an}ÖÐaj=i£¬¡ànΪżÊý£¨12·Ö£©£®
¡àµ±nÎªÆæÊýʱ£¬Ò»¶¨´æÔÚÒ»Ïîak=k£¬
µ±nΪżÊýʱ£¬²»Ò»¶¨´æÔÚÒ»Ïîak=k£®-------------------£¨13·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éж¨ÒåµÄÓ¦Óã¬ÒÔ¼°³ä·ÖÌõ¼þºÍ±ØÒªÌõ¼þµÄÖ¤Ã÷£¬×ÛºÏÐÔ½ÏÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}¸÷Ïî¾ù²»Îª0£¬ÆäǰnÏîºÍΪSn£¬ÇÒ¶ÔÈÎÒân¡ÊN*¶¼ÓУ¨1-p£©Sn=p-pan£¨pΪ´óÓÚ1µÄ³£Êý£©£¬Ôòan=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬¹Û²ìÏÂÃæµÄ³ÌÐò¿òͼ
£¨1£©Èôd¡Ù0£¬·Ö±ðд³öµ±k=2£¬k=3ʱsµÄ±í´ïʽ£®
£¨2£©µ±ÊäÈëa1=d=2£¬k=100 Ê±£¬ÇósµÄÖµ£¨ ÆäÖÐ2µÄ¸ß´Î·½²»ÓÃËã³ö£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•×ÊÑôһ죩ÒÑÖªÊýÁÐ{an}¸÷ÏîΪÕýÊý£¬Ç°nÏîºÍSn=
1
2
an(an+1)
£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãb1=1£¬bn+1=bn+3an£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Áîcn=
3an
2
b
2
n
£¬ÊýÁÐ{cn}ǰnÏîºÍΪTn£¬ÇóÖ¤£ºTn£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}¸÷Ïî¾ù²»Îª0£¬ÆäǰnÏîºÍΪSn£¬ÇÒ¶ÔÈÎÒân¡ÊN*¶¼ÓУ¨1-p£©Sn=p-pan£¨p¡Ù¡À1µÄ³£Êý£©£¬¼Çf(n)=
1+
C
1
n
a1+
C
2
n
a2+¡­+
C
n
n
an
2nSn
£®
£¨¢ñ£©Çóan£»
£¨¢ò£©Çó
lim
n¡ú¡Þ
f(n+1)
f(n)
£»
£¨¢ó£©µ±p£¾1ʱ£¬Éèbn=
p+1
2p
-
f(n+1)
f(n)
£¬ÇóÊýÁÐ{pk+1bkbk+1}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬Âú×ãn
a
2
n
+(1-n2)a n-n=0
£®
£¨1£©¼ÆËãa1£¬a2£¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{
an
2n
}
µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸