科目:高中数学 来源: 题型:
已知定义域为
的函数
满足:①对任意
,恒有
成立;当
时,
。给出如下结论:
①对任意
,有
;②函数
的值域为
;③存在
,使得
;④“函数
在区间
上单调递减”的充要条件是 “存在
,使得
”。
其中所有正确结论的序号是 。
查看答案和解析>>
科目:高中数学 来源: 题型:
已知定义域为
的函数
满足:①对任意
,恒有
成立;当
时,
。给出如下结论:
①对任意
,有
;②函数
的值域为
;③存在
,使得
;④“函数
在区间
上单调递减”的充要条件是 “存在
,使得
”。
其中所有正确结论的序号是 。
查看答案和解析>>
科目:高中数学 来源:2012届山西大学附中高三4月月考理科数学试卷(解析版) 题型:填空题
已知定义域为
的函数
满足:①对任意
,恒有
成立;当
时,
。给出如下结论:
①对任意
,有
;②函数
的值域为
;③存在
,使得
;④“函数
在区间
上单调递减”的充要条件是
“存在
,使得
”。其中所有正确结论的序号是
。
查看答案和解析>>
科目:高中数学 来源:2010-2011年安徽省高一下学期期中考试数学试卷 题型:选择题
、已知定义域为
的函数
为偶函数,且当
时,
是减函数,设![]()
,
,则
的大小关系是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2010年高考试题(福建卷)解析版(理) 题型:填空题
已知定义域为
的函数
满足:①对任意
,恒有
成立;当
时,
。给出如下结论:
①对任意
,有
;②函数
的值域为
;③存在
,使得
;④“函数
在区间
上单调递减”的充要条件是
“存在
,使得
”。
其中所有正确结论的序号是 。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com