精英家教网 > 高中数学 > 题目详情
9.已知(1+x)+(1+x)2+…+(1+x)n=a0+a1x+…+anxn,a1+a2+…+an-1=509-n,则n的值(  )
A.7B.8C.9D.10

分析 在所给的等式中,令x=0,可得a0=n,而an =1.再令x=1,可得a0+a1+a2+…+an-1 +an=2n+1-2,结合 a1+a2+…+an-1=509-n,求得n的值.

解答 解:在等式(1+x)+(1+x)2+…+(1+x)n=a0+a1x+…+anxn 中,令x=0,可得a0=n,而an =1.
再令x=1,可得a0+a1+a2+…+an-1 +an=2+22+23=…+2n=$\frac{2(1{-2}^{n})}{1-2}$=2n+1-2,
∴a1+a2+…+an-1=509-n=2n+1-2-n-1,
∴n=8,
故选:B.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,等比数列的求和公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.解关于x的不等式(m+3)x2+(m+2)x-1>0(m∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知实数x,y满足:y=1+$\sqrt{4-{x}^{2}}$(-2≤x≤2).
(1)求m=$\frac{y}{x+3}$的取值范围;
(2)求b=2x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数f(x)=|x|(x-a)(a≤0)在x∈[-1,2]时的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么a18的值为3,且这个数列的前21项的和S21的值为52.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知x,y满足直线l:x+2y=6.
(1)求原点O关于直线l的对称点P的坐标;
(2)当x∈[1,3]时,求$k=\frac{y-1}{x-2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对于集合M、N,定义M-N={x|x∈M,且x∉N},M?N=(M-N)∪(N-M).设A={y|y=x2-3x,x∈R},B={y|y=-2x,x∈R},则A?B等于(  )
A.(-$\frac{9}{4}$,0]B.[-$\frac{9}{4}$,0]C.(-∞,-$\frac{9}{4}$)∪[0,+∞)D.(-∞,-$\frac{9}{4}$]∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm.
(1)怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?
(2)如果左栏矩形ABCD要满足$\frac{AB}{BC}$≥k(k是常数,且k>1),怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知角α的终边在射线y=-$\frac{4}{3}$x(x≤0)上,则sin2α+tan$\frac{α}{2}$=$\frac{26}{25}$.

查看答案和解析>>

同步练习册答案