精英家教网 > 高中数学 > 题目详情

设函数f(x)=(a>0,且a≠1),〔m〕表示不超过实数m的最大整数,则

实数〔f(x)-〕+〔f(-x)-〕的值域是­­­­­­­­­­­­­       

 

【答案】

{-1,0}

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
3
sinxcosx+cos2x+a
-
1
2
,当x∈[-
π
6
π
3
]
时,函数f(x)的最大值与最小值的和为
1
2

(I)求函数f(x)的最小正周期及单调递减区间;
(II)作出y=f(x)在x∈[0,π]上的图象.(不要求书写作图过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若
cosA
cosB
=
b
a
且sinC=cosA
(Ⅰ)求角A、B、C的大小;
(Ⅱ)设函数f(x)=sin(2x+A)+cos(2x-
C
2
)
,求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
12
x2+(1-a)x+(a-1)lnx

(1)当a=0时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)若函数f(x)在区间[2,3]上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lg
ax-5x2-a
的定义域为A,若命题p:3∈A与q:5∈A有且只有一个为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+
bx
(a,b∈R)
,若f(x)在点(1,f(1))处的切线斜率为1.
(Ⅰ)用a表示b;
(Ⅱ)设g(x)=lnx-f(x),若g(x)≤-1对定义域内的x恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案