解:
(1)当t=1时,f(x)=
=-1+
.
图象如图(2分)
基本性质:(每个2分)
奇偶性:既非奇函数又非偶函数;
单调性:在(-∞,1)和(1,+∞)上分别递增;
零点:x=0;
最值:无最大、小值.(6分)
(2)a
n=
=-1+
,
当1≤n≤[t],n∈N
*时,数列单调递增,且此时a
n均大于-1,
当n≥[t]+1,n∈N
*时,数列单调递增,且此时a
n均小于-1,(8分)
因此,数列中的最大项为a
[t}=
,(10分)
最小项为a
[t}+1=
.(12分)
(3)根据题意,只需当x≠t时,方程f(x)=x有解,
亦即方程x
2+(1-t)x+1-t=0有不等于t的解,(14分)
将x=t代入方程左边,得左边为1≠0,故方程不可能有x=t的解.(16分)
由△=(1-t)
2-4(1-t)≥0,解得t≤-3或t≥1,
即实数t的取值范围是(-∞,-3]∪[1,+∞).(18分)
分析:(1)当t=1时,f(x)=
=-1+
,画出函数的图象,利用图象可得函数的性质;
(2)a
n=
=-1+
,确定1≤n≤[t],n∈N
*时,数列单调递增,且此时a
n均大于-1;n≥[t]+1,n∈N
*时,数列单调递增,且此时a
n均小于-1,由此可得结论
(3)只需当x≠t时,方程f(x)=x有解,亦即方程x
2+(1-t)x+1-t=0有不等于t的解,由△≥0,可得实数t的取值范围.
点评:本题考查函数的图象与性质,考查函数的单调性,考查数列与函数的关系,考查方程解的研究,确定函数的单调性是关键.