精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)满足f(2-x)为奇函数,函数f(x+3)关于直线x=1对称,则下列式子一定成立的是(  )
A、f(x-2)=f(x)
B、f(x-2)=f(x+6)
C、f(x-2)•f(x+2)=1
D、f(-x)+f(x+1)=0
考点:抽象函数及其应用
专题:函数的性质及应用
分析:直接利用函数的奇偶性,以及函数的对称性,求出f(x-2)=f(x+6),得到结果即可.
解答: 解:令F(x)=f(2-x),∵f(2-x)为奇函数,
∴F(-x)=-F(x),即f(2+x)=-f(2-x),
∴即f(x)的图象关于点(2,0)对称,
令G(x)=f(x+3),G(x)图象关于直线x=1对称,
即G(1+x)=G(1-x),f[(1+x)+3]=f[(1-x)+3],f(4+x)=f(4-x),
即f(x)的图象关于直线x=4对称,
f(x)=f[4+(x-4)]=f[4-(x-4)]=f(8-x)
用x+6换表达式中的x,可得f(x-2)=f(x+6),
故选:B.
点评:本题考查抽象函数的应用,函数的奇偶性以及函数的对称性的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=9x-2•3x+3k-1(k为常数)
(1)求函数f(x)在(-∞,log3a]上的最小值(a为常数);
(2)若方程f(x)=0有两个实数根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设半径长为5的圆C满足条件:(1)截y轴所得弦长为6;(2)圆心在第一象限.并且到直线l:x+2y=0的距离为
6
5
5

(Ⅰ)求这个圆的方程;
(Ⅱ)求经过P(-1,0)与圆C相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(x,y,z),若x+y+z是3的倍数,则满足条件的点的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A,B,C所对的边分别为a,b,c,a=
2
,A=45°,B=75°则边c=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线m,n和平面α,且m在α内,n在α外,则“n∥α”是“m∥n”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i是虚数单位,则
2-i
1+2i
=(  )
A、-i
B、
4
5
+
3
5
i
C、-1
D、
4
5
-i

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设直线l:y=kx+
2
(k∈R)与抛物线C:y=x2相交于P,Q两点,其中Q点在第一象限.
(1)若点M是线段PQ的中点,求点M到x轴距离的最小值;
(2)当k>0时,过点Q作y轴的垂线交抛物线C于点R,若
PQ
PR
=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-3x.
(1)当a≤0时,求函数f(x)单调区间;
(2)若函数f(x)在区间[1,2]上的最小值为4,求a的值.

查看答案和解析>>

同步练习册答案