精英家教网 > 高中数学 > 题目详情
平面内一动点P(x,y)到两定点F1(-1,0),F2(1,0)的距离之积等于1.
(1)求动点P(x,y)的轨迹C方程,用y2=f(x)形式表示;
(2)类似高二第二学期教材(12.4椭圆的性质、12.6双曲线的性质、12.8抛物线的性质)中研究曲线的方法请你研究轨迹C的性质,请直接写出答案;
(3)求△PF1F2周长的取值范围.
【答案】分析:(1)利用动点P(x,y)到两定点F1(-1,0),F2(1,0)的距离之积等于1,建立方程,化简可得结论;
(2)写出对称性、顶点、x、y范围即可;
(3)表示出△PF1F2周长,确定|PF1|的范围,即可求△PF1F2周长的取值范围.
解答:解:(1)∵动点P(x,y)到两定点F1(-1,0),F2(1,0)的距离之积等于1
∴|PF1||PF2|=1
×=1
化简得y2=.    
(2)性质:
对称性:关于原点对称、关于x轴对称、关于y轴对称                           
顶点:(0,0),(±,0)
x的范围:-≤x≤
y的范围:;                     
(3)△PF1F2周长为|PF1|+|PF2|+|F1F2|=|PF1|++2
∵|PF1|==(-≤x≤且x≠0)
∴|PF1|∈
∴△PF1F2周长的取值范围为(4,2+2).
点评:本题考查轨迹方程,考查曲线的性质,考查三角形周长的求解,正确表示三角形的周长是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面内一动点P到F(1,0)的距离比点P到y轴的距离大1.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线x=-1于M点,且
MA
=λ1
AF
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)平面内一动点P(x,y)到两定点F1(-1,0),F2(1,0)的距离之积等于1.
(1)求动点P(x,y)的轨迹C方程,用y2=f(x)形式表示;
(2)类似高二第二学期教材(12.4椭圆的性质、12.6双曲线的性质、12.8抛物线的性质)中研究曲线的方法请你研究轨迹C的性质,请直接写出答案;
(3)求△PF1F2周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)平面内一动点P(x,y)到两定点F1(-1,0),F2(1,0)的距离之积等于2.
(1)求△PF1F2周长的最小值;
(2)求动点P(x,y)的轨迹C方程,用y2=f(x)形式表示.

查看答案和解析>>

科目:高中数学 来源:2012年上海市奉贤区高考数学二模试卷(文科)(解析版) 题型:解答题

平面内一动点P(x,y)到两定点F1(-1,0),F2(1,0)的距离之积等于2.
(1)求△PF1F2周长的最小值;
(2)求动点P(x,y)的轨迹C方程,用y2=f(x)形式表示.

查看答案和解析>>

同步练习册答案