精英家教网 > 高中数学 > 题目详情
(2012•奉贤区二模)平面内一动点P(x,y)到两定点F1(-1,0),F2(1,0)的距离之积等于1.
(1)求动点P(x,y)的轨迹C方程,用y2=f(x)形式表示;
(2)类似高二第二学期教材(12.4椭圆的性质、12.6双曲线的性质、12.8抛物线的性质)中研究曲线的方法请你研究轨迹C的性质,请直接写出答案;
(3)求△PF1F2周长的取值范围.
分析:(1)利用动点P(x,y)到两定点F1(-1,0),F2(1,0)的距离之积等于1,建立方程,化简可得结论;
(2)写出对称性、顶点、x、y范围即可;
(3)表示出△PF1F2周长,确定|PF1|的范围,即可求△PF1F2周长的取值范围.
解答:解:(1)∵动点P(x,y)到两定点F1(-1,0),F2(1,0)的距离之积等于1
∴|PF1||PF2|=1
(x+1)2+y2
×
(x-1)2+y2
=1
化简得y2=
4x2+1
-x2-1
.    
(2)性质:
对称性:关于原点对称、关于x轴对称、关于y轴对称                           
顶点:(0,0),(±
2
,0)
x的范围:-
2
≤x≤
2

y的范围:-
1
2
≤y≤
1
2
;                     
(3)△PF1F2周长为|PF1|+|PF2|+|F1F2|=|PF1|+
1
|PF1|
+2
∵|PF1|=
(x+1)2+y2
=
4x2+1
+2x
(-
2
≤x≤
2
且x≠0)
∴|PF1|∈(
2
-1,1)∪(1,
2
+1)

∴△PF1F2周长的取值范围为(4,2+2
2
).
点评:本题考查轨迹方程,考查曲线的性质,考查三角形周长的求解,正确表示三角形的周长是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•奉贤区二模)已知函数f(x)=
3
sin2x+sinxcosx
x∈[
π
2
, π]

(Ⅰ)求方程f(x)=0的根;
(Ⅱ)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)若集合A={-1,0,1},B={y|y=cosx,x∈A},则A∩B=
{1}
{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)已知cos(x-
π
6
)=-
3
3
,则cosx+cos(x-
π
3
)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)过平面区域
x-y+2≥0
y+2≥0
x+y+2≤0
内一点P作圆O:x2+y2=1的两条切线,切点分别为A,B,记∠APB=α,当α最小时,此时点P坐标为
(-4,-2)
(-4,-2)

查看答案和解析>>

同步练习册答案