【题目】设向量
=(λ+2,λ2﹣
cos2α),
=(m,
+sinαcosα),其中λ,m,α为实数.
(1)若α=
,求|
|的最小值;
(2)若
=2
,求
的取值范围.
【答案】
(1)解:当a=
时,
=(m,
+
),
∴|
|2=
m2+
+
=
(m2+
m)+
=
(m+
)2+
,
∴|
|= ![]()
(2)解:∵
=2
,向量
=(λ+2,λ2﹣
cos2α),
=(m,
+sinαcosα),
∴λ+2=2m,λ2﹣
cos2α=m+sin2α
∴4m2﹣9m+4=sin2α+
cos2α=2sin(2α+
),
∵﹣2≤2sin(2α+
)≤2,
∴﹣2≤4m2﹣9m+4≤2,
解得
≤m≤2
而
=2﹣
,
∴
∈[﹣6,1]
【解析】(1)根据向量的模的定义和二次函数的性质即可求出,(2)根据
=2
,结合三角函数的恒等变换,求出m的取值范围,再求
的取值范围即可.
科目:高中数学 来源: 题型:
【题目】现有5名男生、2名女生站成一排照相,
(1)两女生要在两端,有多少种不同的站法?
(2)两名女生不相邻,有多少种不同的站法?
(3)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
,直线
经过椭圆的右焦点与椭圆交于
两点,且
.
(I)求直线
的方程;
(II)已知过右焦点
的动直线
与椭圆
交于
不同两点,是否存在
轴上一定点
,使
?(
为坐标原点)若存在,求出点
的坐标;若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果函数y=f(x)的导函数的图象如图所示,给出下列判断:
![]()
①函数y=f(x)在区间(-3,-1)内单调递增;②当x=2时,函数y=f(x)有极小值;
③函数y=f(x)在区间
内单调递增;④当
时,函数y=f(x)有极大值.
则上述判断中正确的是( )
A. ①② B. ②③ C. ③④ D. ③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,
(Ⅰ)求证:平面PED⊥平面PAC;
(Ⅱ)若直线PE与平面PAC所成的角的正弦值为
,求二面角A﹣PC﹣D的平面角的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣e﹣x﹣2x.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;
(Ⅲ)已知1.4142<
<1.4143,估计ln2的近似值(精确到0.001).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣a|+2;
(1)若不等式f(x)<6的解集为(﹣1,3),求a的值;
(2)在(1)的条件下,对任意的x∈R,都有f(x)>t﹣f(﹣x),求t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com