【题目】从6双不同手套中,任取4只,
(1)恰有1双配对的取法是多少?
(2)没有1双配对的取法是多少?
(3)至少有1双配对的取法是多少?
【答案】(1)240 (2)240 (3)255
【解析】
(1)取出一双手套共有种取法;剩余2只在不同的5双手套中取单只,共有种取法,再根据分步乘法原理,即可求得答案.
(2)根据题意,4只手套分别从6双手套中取单只,共有种取法;
(3)至少有1双配对,包括恰有1双配对和2双配对,根据分类加法原理,即可求得答案.
解:(1)从6双不同手套中,取出一双手套共有种取法;
剩余2只先在5双中取2双,再从2双中各取1只,共有种取法;
所以,恰有1双配对的取法有种.
(2)根据题意,先在6双手套中取4双,再从取出的4双中各取1只,
共有种取法;
(3)至少有1双配对,包括恰有1双配对和2双配对;
由(1)可知,恰有1双配对有种取法;
2双配对有种取法;
根据分类加法原理,至少有1双配对的取法种取法.
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)经过点(0, ),离心率e= .
(Ⅰ)求椭圆C的方程及焦距.
(Ⅱ)椭圆C的左焦点为F1 , 右顶点为A,经过点A的直线l与椭圆C的另一交点为P.若点B是直线x=2上异于点A的一个动点,且直线BF1⊥l,问:直线BP是否经过定点?若是,求出该定点的坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体ABCD﹣A'B'C'D'中,E是AA'的中点,P是三角形BDC'内的动点,EP⊥BC',则P的轨迹长为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示是某市2017年4月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某同志随机选择4月1日至4月12日中的某一天到达该市,并停留3天. 该同志到达当日空气质量重度污染的概率 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解一种植物的生长情况,抽取一批该植物样本测量高度(单位:cm),其频率分布直方图如图所示.
(1)求该植物样本高度的平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);
(2)假设该植物的高度Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2,利用该正态分布求P(64.5<Z<96).
(附:=10.5.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线斜率;
(2)求函数的单调区间与极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为(为参数),在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,直线:θ=(ρ>0),A(2,0).
(1)把C1的普通方程化为极坐标方程,并求点A到直线的中距离;
(2)设直线分别交C1,C2于点P,Q,求△APQ的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程;
(3)试预测加工10个零件需要多少时间.
参考公式:回归直线,
其中,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设向量 =(λ+2,λ2﹣ cos2α), =(m, +sinαcosα),其中λ,m,α为实数.
(1)若α= ,求| |的最小值;
(2)若 =2 ,求 的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com