精英家教网 > 高中数学 > 题目详情
4.如图所示,在梯形ABCD中,BC∥AD,BC=3AD,点E在AB边上,且$\frac{AE}{BE}$=$\frac{1}{4}$,求△BEC的面积与四边形AECD的面积之比.

分析 连接AC,则△AEC与△BEC的面积的比等于1:4,再根据BC=3AD的△ABC与△ACD的面积的比等于3:1,设△ACE的面积为a,则可以表示出△BEC与四边形AECD的面积,再求出比值即可

解答 解:如图,连接AC,设△AEC的面积为a,
∵$\frac{AE}{BE}$=$\frac{1}{4}$,∴S△BEC=4a,
∴S△ABC=a+4a=5a,
∵BC=3AD,∴S△ABC=3S△ACD=5a,
∴S△ACD=$\frac{5}{3}$a,
∴四边形AECD的面积=S△AEC+S△ACD=a+$\frac{5}{3}$a=$\frac{8}{3}$a,
∴△BEC的面积:四边形AECD的面积=4a:$\frac{8}{3}$a=3:2.

点评 利用等腰三角形边长的关系得到面积的关系从而得到三角形与四边形的面积的比是解决本题的主要思路.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求下列数列{an}的通项公式.
(1)an+1-an=2n,a1=1;
(2)an+1-an=2n,a1=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的导数:
(1)y=e1-2x+ln(3-x);                   
(2)y=ln$\frac{1-x}{1+x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,体积为V的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.v1为小球相交部分(图中阴影部分)的体积,v2为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是(  )
A.v1=$\frac{v}{2}$B.v2=$\frac{v}{2}$C.v1>v2D.v1<v2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某汽车销售公司为促销采取了较为灵活的付款方式,对购买一辆10万元的轿车在1年内将款全部付清的前提下,可以选择以下两种分歧付款的方案购车:
方案一:分3次付清,购买后4个月第1次付款,再过4个月第2次付款,再过4个月第3次付款:
方案二:分12次付清,购买后一个月第1次付款,再过1个月第2次付款,再过1个月第3次付款…购买12个月后第12次付款.
购买规定分期付款中每期付款额相同,月利率为0.8%,每月利息按复利计算,试比较以上两种方案的那一种方案付款总额较少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.判断${\;}_{x→1}^{lin}$e${\;}^{\frac{2}{x-1}}$是否存在?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\frac{a}{{log}_{a}x}$(a>1)的图象沿着向量$\overrightarrow{a}$=(-2,1)平移后,若在[2,6]中的最大值与最小值的差为$\frac{2a}{3}$,则a的值为(  )
A.16B.$\frac{1}{16}$C.8D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个棱锥的三视图如图,最长侧棱(单位:cm)为$\sqrt{14}$cm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,且3$\overrightarrow{a}$+5$\overrightarrow{b}$与4$\overrightarrow{a}$-3$\overrightarrow{b}$垂直,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

同步练习册答案