精英家教网 > 高中数学 > 题目详情
16.函数f(x)=$\frac{a}{{log}_{a}x}$(a>1)的图象沿着向量$\overrightarrow{a}$=(-2,1)平移后,若在[2,6]中的最大值与最小值的差为$\frac{2a}{3}$,则a的值为(  )
A.16B.$\frac{1}{16}$C.8D.$\frac{1}{8}$

分析 根据函数图象的平移得出g(x)=$\frac{a}{lo{g}_{a}(x+2)}+1$.
利用单调性结合最值得出方程$\frac{a}{2lo{g}_{a}2}$$-\frac{a}{3lo{g}_{a}2}$=$\frac{2a}{3}$,求解即可.

解答 解:∵函数f(x)=$\frac{a}{{log}_{a}x}$(a>1)的图象沿着向量$\overrightarrow{a}$=(-2,1)平移得出g(x),
∴g(x)=$\frac{a}{lo{g}_{a}(x+2)}+1$.
∵a>1,
∴g(x)=$\frac{a}{lo{g}_{a}(x+2)}+1$.在[2,6]上是减函数.
∵[2,6]中的最大值与最小值的差为$\frac{2a}{3}$,
∴g(2)-g(6)=$\frac{2a}{3}$.
即$\frac{a}{2lo{g}_{a}2}$$-\frac{a}{3lo{g}_{a}2}$=$\frac{2a}{3}$,
化简得出:loga2=$\frac{1}{4}$.
即a=16.
故选:A

点评 本题考察了对数函数的图象和性质,利用函数的单调性得出最值即可求解,熟练运用对数运算化简运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知关于x的方程(k-1)x2+(2k-3)x+k+1=0有两个不相等的实数根x1,x2
(1)求k的取值范围;
(2)若x1>0,x2>0,求k的取值范围;
(3)若x1<0,x2<0,求k的取值范围;
(4)若x1>0,x2<0,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知mx2+x+1=0有且只有一个根在区间(0,1)内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在梯形ABCD中,BC∥AD,BC=3AD,点E在AB边上,且$\frac{AE}{BE}$=$\frac{1}{4}$,求△BEC的面积与四边形AECD的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设实数x,y,z满足0<x<y<z<$\frac{π}{2}$,证明:$\frac{π}{2}$+2sinxcosy+2sinycosz>sin2x+sin2y+sin2z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)先求方程2x2+3x-5=0的根,再分解因式2x2+3x-5=(2x+5)(x-1)
(2)已知方程ax2+bx+c=0的两个根为x1,x2,则ax2+bx+c可分解因式为:a(x-x1)(x-x2
(3)通过上述内容,你体会出已知一元二次方程的根可以分解对应的二次三项式,反之也可.请分解下列因式:2x2-3xy-2y2=(2x+y)(x-2y),2x2-x-2=2$(x-\frac{1+\sqrt{17}}{4})$$(x-\frac{1-\sqrt{17}}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.判断下列各题中条件与结论的关系.
(1)条件A:ax2+ax+1>0的解集为R,结论B:0<a<4;
(2)条件p:A?B,结论q:A∪B=B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1-a}{2}{x}^{2}$-ax-a(a>0),求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为绿化小区物业管理处利用围墙边空地,用竹篱笆围出一块矩形花圃(如图所示),材料共可围12米篱笆,设花圃面积为y(m2),花圃长为x(m)
(1)试建立y与x的函数关系式
(2)当花圃的长和宽各为多少米时,花圃的面积最大?最大面积是多少?

查看答案和解析>>

同步练习册答案