精英家教网 > 高中数学 > 题目详情
17.求值
(1)log${\;}_{\sqrt{3}}$2-log3$\frac{32}{9}$+$\frac{1}{lo{g}_{8}3}$-5${\;}^{lo{g}_{5}3}$;
(2)已知2x=3y,且$\frac{1}{x}$+$\frac{1}{y}$=1,求x,y.

分析 (1)利用对数的运算法则即可得出;
(2)利用指数与对数的运算法则即可得出.

解答 解:(1)原式=log34-log3$\frac{32}{9}$+log38-3
=$lo{g}_{3}\frac{4×8}{\frac{32}{9}}$-3
=log39-3=-1.
(2)令2x=3y=k>0,k≠1.
则x=log2k,y=log3k,
∴$\frac{1}{x}=\frac{lg2}{lgk}$,$\frac{1}{y}$=$\frac{lg3}{lgk}$,
且$\frac{1}{x}$+$\frac{1}{y}$=1,
∴$\frac{lg2+lg3}{lgk}$=1,
解得k=6.
∴x=log26,y=log36.

点评 本题考查了指数与对数的运算法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=x(ex-e-x),则使得f(x)>f(2x-1)成立的x的取值范围是(  )
A.($\frac{1}{3}$,1)B.(-∞,$\frac{1}{3}$)∪(1,+∞)C.(-$\frac{1}{3}$,$\frac{1}{3}$)D.(-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}为等比数列,Sn是它的前n项和,若a2•a3=2a1,且a4与2a7的等差中项为$\frac{5}{4}$,则S6=(  )
A.35B.33C.31D.$\frac{63}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30m,并在C测得塔顶A的仰角为60°,则塔的高度为15$\sqrt{6}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆心为C的圆经过点A(1,1),B(2,-2),且圆心C在直线l:x-y+1=0上
(1)求圆C的标准方程
(2)求过点(1,1)且与圆相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a=log32,b=log30.5,c=1.10.5,那么a、b、c的大小关系为(  )
A.b>c>aB.b>a>cC.a>b>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域为[$\frac{a}{2}$,$\frac{b}{2}$],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则t的范围为(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别是F1、F2,离心率为$\frac{{\sqrt{3}}}{3}$,过点F2的直线交椭圆C于A、B两点,且△AF1B的周长为$4\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)若过定点M(0,-2)的动直线l与椭圆C相交P,Q两点,求△OPQ的面积的最大值(O为坐标原点),并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设f(x)是定义在R上的函数,若对任意的实数x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2且f(-1)=0,则f(2015)的值是(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

同步练习册答案