精英家教网 > 高中数学 > 题目详情
5.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30m,并在C测得塔顶A的仰角为60°,则塔的高度为15$\sqrt{6}$m.

分析 先根据三角形内角和为180°,求得∠CBD,再根据正弦定理求得BC,进而在Rt△ABC中,根据AB=BCtan∠ACB求得AB

解答 解:在△BCD中,∠CBD=180°-15°-30°=135°.
由正弦定理得$\frac{BC}{sin30°}=\frac{30}{sin135>}$,所以BC=15$\sqrt{2}$.
在Rt△ABC中,AB=BCtan∠ACB=15$\sqrt{2}$×$\sqrt{3}$=15$\sqrt{6}$.
故答案为:15$\sqrt{6}$m.

点评 本题考查了解三角形的实际应用,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设f(x)=$\frac{{e}^{|x|}+x+1}{{e}^{|x|}+1}$在区间[-m,m](m>0)上的最大值为p,最小值为q,则p+q=(  )
A.4B.3.5C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.计算:(1)${log_{\sqrt{2}}}2\sqrt{2}+{log_2}3•{log_3}\frac{1}{2}$=2;
(2)设f(x)=$\left\{\begin{array}{l}{2^{x+1}}(x≥0)\\ f(x+1)+2(x<0)\end{array}$,则$f(-\frac{2015}{2})$=$2\sqrt{2}+2016$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列各式的值.
(Ⅰ)设${x}^{\frac{1}{2}}+{x}^{{-}^{\frac{1}{2}}}=3$,求x+x-1
(Ⅱ)(lg2)2+lg5•lg20+($\root{3}{2}×\sqrt{3})^{6}+(2\frac{1}{4})^{\frac{1}{2}}-0.{3}^{0}-1{6}^{-\frac{3}{4}}$6+$(2\frac{1}{4})^{\frac{1}{2}}$-0.30-$1{6}^{{-}^{\frac{3}{4}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=|x|-3(-3≤x≤3),
(1)用分段函数表示f(x)并作出其图象;
(2)指出函数f(x)的单调区间及相应的单调性;
(3)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若“?x∈[0,$\frac{π}{4}$],m≥tanx”是真命题,则实数m的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求值
(1)log${\;}_{\sqrt{3}}$2-log3$\frac{32}{9}$+$\frac{1}{lo{g}_{8}3}$-5${\;}^{lo{g}_{5}3}$;
(2)已知2x=3y,且$\frac{1}{x}$+$\frac{1}{y}$=1,求x,y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线l1:ax+3y-1=0与直线l2:2x+(a-1)y+1=0平行,则实数a为(  )
A.3B.-2C.3或-2D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A、B、C的对边分别是a、b、c,则下列各式正确的是(  )
A.$\frac{a}{sinB}=\frac{b}{sinA}$B.$\frac{a}{cosA}=\frac{b}{cosB}$C.asinB=bsinAD.asinC=csinB

查看答案和解析>>

同步练习册答案