精英家教网 > 高中数学 > 题目详情
已知分别是椭圆的左右焦点,过垂直与轴的直线交椭圆于两点,若是锐角三角形,则椭圆离心率的范围是(   )
A.B.C.D.
C

试题分析:为锐角三角形,只需保证为锐角即可。根据椭圆的对称性,只需保证即可,而,即,整理得,解得,又因为椭圆的离心率小于,故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点分别为,且经过点,为椭圆上的动点,以为圆心,为半径作圆.
(1)求椭圆的方程;
(2)若圆轴有两个交点,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的离心率等于,点P在椭圆上。
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为,过点的动直线与椭圆相交于两点,是否存在定直线,使得的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的左、右焦点分别为F1(-1,0),F2(1,0),过F1作与x轴不重合的直线l交椭圆于A,B两点.
(I)若ΔABF2为正三角形,求椭圆的离心率;
(II)若椭圆的离心率满足,为坐标原点,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知<4,则曲线有(      )
A.相同的准线B.相同的焦点C.相同的离心率D.相同的长轴

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知得顶点分别是离心率为的圆锥曲线的焦点,顶点在该曲线上,一同学已正确地推得,当时有 ,类似地,当时,有               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.则椭圆的标准方程为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设e是椭圆=1的离心率,且e∈(,1),则实数k的取值范围是 (  )
A.(0,3)B.(3,)
C.(0,3)∪(,+∞)D.(0,2)

查看答案和解析>>

同步练习册答案