精英家教网 > 高中数学 > 题目详情
已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.则椭圆的标准方程为       

试题分析:条件中给出一个直线系,需要先求出直线所过的定点,根据定点是椭圆的焦点,及椭圆C上的点到点F的最大距离为8,写出椭圆中三个字母系数要满足的条件,解方程组得到结果,写出椭圆的方程解:由(1+4k)x-(2-3k)y-(3+12k)=0得(x-2y-3)+k(4x+3y-12)=0,由x-2y-3=0,4x+3y-12=0,解得F(3,0).设椭圆C的标准方程为(a>b>0),则,c=3,a+c=8,,解得解得 a=5,b=4,c=3,从而椭圆C的标准方程为
点评:本题考查直线与圆锥曲线之间的关系,题目中首先求椭圆的方程,这是这类题目常用的一种形式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知分别是椭圆的左右焦点,过垂直与轴的直线交椭圆于两点,若是锐角三角形,则椭圆离心率的范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的方程为,其离心率为,经过椭圆焦点且垂直于长轴的弦长为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:与椭圆C交于A、B两点,P为椭圆上的点,O为坐标原点,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点在圆上,直线交椭圆于两点.
(1)求椭圆的方程;
(2)若(为坐标原点),求的值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的方程为,过点作圆的两条切线,切点分别为,直线恰好经过椭圆的右顶点和上顶点.

(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆垂直于轴的一条弦,所在直线的方程为是椭圆上异于的任意一点,直线分别交定直线于两点,求证.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.

(1)求该椭圆的离心率和标准方程;
(2)过B1作直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点为,点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点,设点是椭圆上任一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知焦点在轴上的椭圆的离心率是,则的值为 (  )
A. B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,A,B,C分别为的顶点与焦点,若∠ ABC=90°,则该椭圆的离心率为     (  )
A.B.1-C.-1 D.

查看答案和解析>>

同步练习册答案