精英家教网 > 高中数学 > 题目详情

 已知直线的方程为,直线的方程为为实数).当直线与直线的夹角在(0,)之间变动时,的取值范围是        

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•郑州一模)已知在直角坐标系xOy中,曲线C的参数方程为
x=2+2cosθ
y=2sinθ
为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直 线l的方程为ρsin(θ+
π
4
)=2
2

(I)求曲线C在极坐标系中的方程;
(II)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)离心率为
3
2
,且过P(
6
2
2
).
(1)求椭圆E的方程;
(2)已知直线l过点M(-
1
2
,0),且与开口朝上,顶点在原点的抛物线C切于第二象限的一点N,直  线l与椭圆E交于A,B两点,与y轴交与D点,若
AB
=λ
AN
BD
BN
,且λ+μ=
5
2
,求抛物线C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:044

已知圆的半径为,圆心在直线y=2x上,圆被直xy=0截得的弦长为,求圆的方程.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

已知圆的半径为,圆心在直线y=2x上,圆被直x-y=0截得的弦长为,求圆的方程.

查看答案和解析>>

科目:高中数学 来源:河北省高三下学期第二次考试数学(文) 题型:解答题

(本题满分12分)已知椭圆的离心率为

直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直

线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;

(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积

的最小值.

 

查看答案和解析>>

同步练习册答案