精英家教网 > 高中数学 > 题目详情
已知两个原命题:

(1)正三角形的三个内角都等于60°;(2)若k<0,则方程x2+(2k+1)x+k=0必有两个相异实根.

则在它们及它们各自的逆命题、否命题、逆否命题共8个命题中,真命题的个数是(    )

A.2                 B.4                  C.6                D.8

C

解析:关于(1)的四种命题都是真命题,关于(2)的原命题、逆否命题为真.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知条件p:|x-1|>a(a≥0)和条件q:lg(x2-3x+3)>0,
(1)求满足条件p,q的不等式的解集.
(2)分别利用所给的两个条件作为A,B构造命题:“若A,则B”,问是否存在非负实数a使得构造的原命题为真命题,而其逆命题为假命题,若存在,求出a的取值范围.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:|5x-1|>a(a>0)和条件q:
12x2-3x+1
>0
,请选取适当的实数a的值,分别利用所给的两个条件作为A、B构造命题:“若A则B”,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.

查看答案和解析>>

科目:高中数学 来源:江西省月考题 题型:解答题

已知条件p:|5x﹣1|>a(a>0)和条件,请选取适当的实数a的值,分别利用所给的两个条件作为A、B构造命题:“若A则B”,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省福州市八县(市)一中高二(下)期末数学试卷(文科)(解析版) 题型:解答题

已知条件p:|x-1|>a(a≥0)和条件q:lg(x2-3x+3)>0,
(1)求满足条件p,q的不等式的解集.
(2)分别利用所给的两个条件作为A,B构造命题:“若A,则B”,问是否存在非负实数a使得构造的原命题为真命题,而其逆命题为假命题,若存在,求出a的取值范围.若不存在,请说明理由.

查看答案和解析>>

同步练习册答案