【题目】已知关于x的不等式x2﹣ax﹣2>0的解集为{x|x<﹣1或x>b}(b>﹣1).
(1)求a,b的值;
(2)当m>﹣ 时,解关于x的不等式(mx+a)(x﹣b)>0.
【答案】
(1)解:关于x的不等式x2﹣ax﹣2>0的解集为{x|x<﹣1或x>b}(b>﹣1),
∴﹣1,b是方程x2﹣ax﹣2=0的两实数根,
∴ ,
解得a=1,b=2
(2)解:由(1)知,不等式可化为(mx+1)(x﹣2)>0,
又m>﹣ ,
当m=0时,不等式化为x﹣2>0,解得x>2;
当m>0时,不等式化为(x+ )(x﹣2)>0,解得x<﹣ ,或x>2;
当﹣ <m<0时,﹣ >2,不等式化为(x+ )(x﹣2)<0,解得2<x<﹣ ;
综上,m>0时,不等式的解集为{x|x<﹣ ,或x>2},
m=0时,不等式的解集为{x|x>2},
﹣ <m<0时,不等式的解集为{x|2<x<﹣ }
【解析】(1)根据一元二次不等式和对应方程的关系,结合根与系数的关系,即可求出a、b的值;(2)讨论m=0以及m>0,﹣ <m<0时,求出对应不等式的解集即可.
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=5,a2=2,an=2an﹣1+3an﹣2 , (n≥3) (Ⅰ)证明数列{an﹣3an﹣1}成等比数列,并求数{an}列的通项公式an;
(Ⅱ)若数列bn= (an+1+an),求数列{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.
(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值为 ,求直线PA与平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+(a+2)x+5+a,a∈R.
(Ⅰ)若方程f(x)=0有一正根和一个负根,求a的取值范围;
(Ⅱ)当x>﹣1时,不等式f(x)≥0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知an=logn+1(n+2)(n∈N+),观察下列运算:a1a2=log23log34= =2;a1a2a3a4a5a6=log23log34…log67lg78= =3;….定义使a1a2a3…ak为整数的k(k∈N+)叫做希望数,则在区间[1,2016]内所有希望数的和为( )
A.1004
B.2026
C.4072
D.22016﹣2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等比数列{an}的前项n和Sn , a2= ,且S1+ ,S2 , S3成等差数列,数列{bn}满足bn=2n.
(1)求数列{an}的通项公式;
(2)设cn=anbn , 若对任意n∈N+ , 不等式c1+c2+…+cn≥ λ+2Sn﹣1恒成立,求λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+(y﹣1)2=9,直线l:x﹣my+m﹣2=0,且直线l与圆C相交于A、B两点. (Ⅰ)若|AB|=4 ,求直线l的倾斜角;
(Ⅱ)若点P(2,1)满足 = ,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com