精英家教网 > 高中数学 > 题目详情

【题目】设等比数列{an}的前项n和Sn , a2= ,且S1+ ,S2 , S3成等差数列,数列{bn}满足bn=2n.
(1)求数列{an}的通项公式;
(2)设cn=anbn , 若对任意n∈N+ , 不等式c1+c2+…+cn λ+2Sn﹣1恒成立,求λ的取值范围.

【答案】
(1)解:设数列{an}的公比为q,

成等差数列,∴ ,∴

,∴ ,∴


(2)解:设数列{cn}的前项n和为Tn,则Tn=c1+c2+c3+…+cn

两式相减得

∴对任意n∈N+,不等式 恒成立等价于 恒成立,

恒成立,即 恒成立,

∴f(n)关于n单调递减,∴ ,∴λ≤2,

∴λ的取值范围为(﹣∞,2]


【解析】(1)由S1+ ,S2 , S3成等差数列,可得 ,化简为 ,又因为 ,解得a1和q,即可求出等比数列{an}的通项公式;(2)因为{an}是等比数列,{bn}是等差数列,而cn=anbn , 故利用错位相减法即可求出Tn=c1+c2+…+cn , 将Tn和Sn代入不等式,并整理得 ,记f(n)=
利用作差法可得f(n)关于n单调递减,则f(n)max=f(1)=1,故 ,即λ≤2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一房产商竞标得一块扇形OPQ地皮,其圆心角∠POQ= ,半径为R=200m,房产商欲在此地皮上修建一栋平面图为矩形的商住楼,为使得地皮的使用率最大,准备了两种设计方案如图,方案一:矩形ABCD的一边AB在半径OP上,C在圆弧上,D在半径OQ;方案二:矩形EFGH的顶点在圆弧上,顶点G,H分别在两条半径上.请你通过计算,为房产商提供决策建议.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD=60°,线段AD,BD的中点分别为E,F.现将△ABD沿对角线BD翻折,则异面直线BE与CF所成角的取值范围是(

A.(
B.( ]
C.( ]
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 的定义域为[0,2],则函数g(x)= 的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式x2﹣ax﹣2>0的解集为{x|x<﹣1或x>b}(b>﹣1).
(1)求a,b的值;
(2)当m>﹣ 时,解关于x的不等式(mx+a)(x﹣b)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,过点P(﹣5,a)作圆x2+y2﹣2ax+2y﹣1=0的两条切线,切点分别为M(x1 , y1),N(x2 , y2),且 + =0,则实数a的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间(﹣1,1)上的增函数f(x)= 为奇函数,且f( )=
(1)求函数f(x)的解析式;
(2)解关于t的不等式f(t﹣1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案