精英家教网 > 高中数学 > 题目详情
已知经过点A(-2,0),且以(λ,1+λ)为方向向量的直线l1与经过点B(2,0),且以(1+λ,-3λ)为方向向量的直线l2相交于点P,其中λ∈R.
(1)求点P的轨迹C的方程;
(2)是否存在直线l:y=kx+m(m≠0)与轨迹C相交于不同的两点M、N,且满足|BM|=|BN|?若存在,求出m的取值范围;若不存在,请说明理由.
【答案】分析:(1)对λ进行讨论,即可求点P的轨迹C的方程;
(2)假设存在直线l:y=kx+m(m≠0)与轨迹C相交于不同的两点M、N,且满足|BM|=|BN|,求出线段MN的中点M的坐标,利用M在椭圆C的内部,在直线l上,即可求得结论.
解答:解:(1)当λ≠0且λ≠-1时,直线l1,直线l2:y=
消参可得
当λ=0时,直线l1:x=-2,直线l2:y=0,其交点为(-2,0),适合①;
当λ=-1时,直线l1:y=0,直线l2:x=2,其交点为(2,0),适合①;
∴点P的轨迹C的方程为
(2)假设存在直线l:y=kx+m(m≠0)与轨迹C相交于不同的两点M(x1,y1),N(x2,y2),且满足|BM|=|BN|.
令线段MN的中点M(x,y),则BM垂直平分MN

∴两式相减可得,=k②
∵BM⊥MN,∴
由②③可得
∴M(-1,
∵M在椭圆C的内部,故
∴|k|>1
∵M(-1,)在直线l上,

∴|m|=|k+|≥,当且仅当|k|=时取等号
∴存在直线l满足条件,此时m的取值范围为(-∞,-)∪(,+∞).
点评:本题考查轨迹方程,考查存在性问题的研究,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•荆门模拟)下列命题中正确的是
①②③
①②③

①如果幂函数y=(m2-3m+3)xm2-m-2的图象不过原点,则m=1或m=2;
②定义域为R的函数一定可以表示成一个奇函数与一个偶函数的和;
③已知直线a、b、c两两异面,则与a、b、c同时相交的直线有无数条;
④方程
y-3
x-2
=
y-1
x+3
表示经过点A(2,3)、B(-3,1)的直线;
⑤方程
x2
2+m
-
y2
m+1
=1表示的曲线不可能是椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知经过点A(-2,0),且以(λ,1+λ)为方向向量的直线l1与经过点B(2,0),且以(1+λ,-3λ)为方向向量的直线l2相交于点P,其中λ∈R.
(1)求点P的轨迹C的方程;
(2)是否存在直线l:y=kx+m(m≠0)与轨迹C相交于不同的两点M、N,且满足|BM|=|BN|?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知经过点A(-2,0),且以(λ,1+λ)为方向向量的直线l1与经过点B(2,0),且以(1+λ,-3λ)为方向向量的直线l2相交于点P,其中λ∈R.
(1)求点P的轨迹C的方程;
(2)是否存在直线l:y=kx+m(m≠0)与轨迹C相交于不同的两点M、N,且满足|BM|=|BN|?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知经过点A(-2,0)和点B(1,3a)的直线l1与经过点P(0,-1)和点Q(a,-2a)的直线l2互相垂直,求实数a的值。

查看答案和解析>>

同步练习册答案